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Abstract— Fusing a Hyperspectral image (HSI) and a mul-
tispectral image (MSI) from different sensors is an economic
and effective approach to get an image with both high spa-
tial and spectral resolution, but localized changes between the
multiplatform images can have negative impacts on the fusion.
In this letter, we propose a novel sparsity constrained fusion
method (SCFus) to fuse multiplatform HSIs and MSIs based on
matrix factorization. Specifically, we imposed �1 norm on the
residual term of the MSI to account for the localized changes
between the hyperspectral and MSIs. Furthermore, we plugged a
state-of-the-art denoiser, namely block-matching and 3-D filtering
(BM3D), as the prior of the subspace coefficients by exploiting the
plug-and-play framework. We refer to the proposed method as
SCFus for hyperspectral and MSIs. Experimental results suggest
that the proposed fusion method is more effective in fusing
hyperspectral and MSIs than the competitors.

Index Terms— Hyperspectral image (HSI), image changes,
image fusion, multiplatform data.

I. INTRODUCTION

THE high spectral resolution of hyperspectral
images (HSIs) allows the precise recognition and

identification of the materials present in the images and
promotes remarkable applications in remote sensing, such as
land cover classification, spectral unmixing [1], and anomaly
detection [2]. However, the relative low spatial resolution
hinders the further application of HSIs. An economic and
effective approach is to fuse a low-spatial-resolution HSI
(LR-HSI) and a high-spatial-resolution MSI (HR-MSI) to
produce a high-spatial-resolution HSI (HR-HSI). Although
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there emerge some platforms carrying both hyperspectral
and multispectral imaging sensors, the number of this kind
of platforms is still limited [3]. Thus, fusing multiplatform
hyperspectral and multispectral images (MSIs) has great
potentials for practical applications.

In the past decades, many methods have been pro-
posed to fuse hyperspectral and MSIs, such as matrix
factorization-based methods [4]–[6], tensor factorization-based
methods [7], [8], deep learning-based methods [9]–[11], and
pan-sharpening methods extended for fusion of HSIs and
MSIs [3], [12]. Most of the fusion methods work under an
assumption that the observed images were acquired at almost
the same observing conditions, implying that the LR-HSI and
the HR-MSI can be viewed as spatially and spectrally down-
sampled versions of a unique underlying HR-HSI, respectively
[13]. However, this assumption is not always met in practical
applications, especially when fusing multiplatform data. It may
happen that the observed HSI and MSI were acquired at
long time intervals and different point of view. In this sense,
the LR-HSI and the HR-MSI cannot be simply viewed as
spatially and spectrally downsampled versions of a unique
underlying HR-HSI because localized spatial and spectral
changes will occur during the acquisition of the observed
HSI and MSI, which will have negative impacts on the fusion
results and have been neglected by many methods. Recently,
Borsoi et al. [13] proposed a matrix factorization-based fusion
method accounting for spectral changes. Then, a coupled ten-
sor approximation fusion method [14] accounting for localized
image changes was proposed. The performance improvements
of these two methods highlight the importance of taking the
inter-image changes into account when fusing multiplatform
data.

In this letter, we propose a novel sparsity constrained
method to fuse hyperspectral and MSIs, considering the pres-
ence of localized image changes between the observed HSIs
and MSIs. We summarized the main contributions of this letter
as follows.

1) To better fuse multiplatform hyperspectral and MSIs
with the presence of localized image changes, we pro-
posed a sparsity constrained fusion method (SCFus)
based on matrix factorization by imposing the �1 norm
on the residual term of the MSI to promote the sparsity,
which is different from [15], [16].

2) The spectral low-rankness and spatial self-similarity
of the underlying HR-HSI are exploited by using
a subspace representation and plug-and-play tech-
nique, respectively. We plugged the block-matching and
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3-D filtering (BM3D) denoiser [17] as image prior in
the model, which proved to be effective in regularizing
the subspace coefficients.

Extensive experiments were performed on three datasets in
comparison with seven state-of-the-art fusion methods to fully
evaluate the performance of the proposed method. We refer to
the proposed method as SCFus for hyperspectral and MSIs.

II. PROPOSED METHOD

A. Observation Model

Let Z ∈ R
L×W H denote the HR-HSI, where W , H , and

L denote the number of rows, columns, and bands in the
HR-HSI, respectively. Yh ∈ R

L×wh , Ym ∈ R
l×W H denote the

matrices of LR-HSI, and HR-MSI, respectively, where w, h
denote the number of rows, columns in LR-HSI, and l denote
the number bands in HR-MSI, respectively. We have W > w,
H > h, and L > l.

The LR-HSI Yh can be represented as the spatially down-
sampled version of HR-HSI, Z, as

Yh = ZBS+ Nh (1)

where B ∈ R
W H×W H is a blur kernel, S ∈ R

W H×wh is
the downsampling matrix, and Nh ∈ R

L×wh is the additive
Gaussian noise.

The HR-MSI, Ym , is the spectral downsampled version of
Z and can be represented as

Ym = RZ+ Nm (2)

where R ∈ R
l×L is the spectral response function, and

Nm ∈ R
l×W H . If there is no image changes [13], [14]

occurring between the acquisition of the observed LR-HSI and
HR-MSI, Nm represents additive Gaussian noise. Otherwise,
Nm accounts for not only additive Gaussian noise but also
image changes. We obtained intensity maps of Nm for three
pairs of real multiplatform images, i.e., Paris data, Lake Tahoe
data, and Ivanpah Playa data, by computing 1T

l · abs(Nm),1

followed by reshaping the row vectors into W × H matrices,
as shown in the third column of Fig. 1. Pixels of large values in
the third column of Fig. 1 indicate significant changes between
HR-HSI and HR-MSI. We can see that localized changes exists
in three datasets, presenting sparsity in varying degrees. The
Paris scene exhibits very few changes. The Lake Tahoe scene
and Ivanpah Playa scene show significant changes. We present
the histograms of intensity maps of Nm for three datasets
in the final column of Fig. 1. It can be clearly seen that
most values are zero or near zero. Due to the presence of
localized changes, there exist some pixels with large values,
showing sparsity in varying degrees. This motivates us to take
advantage of the sparsity characteristics of Nm to improve the
fusion performance.

B. Sparsity Constrained Fusion Model

The HR-HSI can be represented by the subspace and its
corresponding coefficients, which can be written as

Z = DA (3)

1Function abs(Nm ) outputs the absolute values of Nm .

Fig. 1. Illustration of the existence of localized image changes between
observed images.

where D ∈ R
L×k , A ∈ R

k×W H are the subspace and the
corresponding coefficients, respectively. Since LR-HSI retains
most of the spectral information of HR-HSI, the subspace can
be estimated from LR-HSI using subspace learning methods,
i.e., singular value decomposition (SVD) [5].

Then, the objective function of the proposed group sparsity
constrained fusion method is written as

min
A

1

2
�Yh − DABS�2

F +
λ

2
�Ym − RDA�1 + βφ(A) (4)

where φ(·) is the regularizer defined to further enhance the
spatial correlation of subspace coefficients A, λ > 0 and
β > 0 are parameters to regularize the group sparsity property
of (Ym −RDA) and the image prior of A. The �1 norm, �·�1,
is introduced to promote the sparsity of (Ym − RDA).

After introducing two auxiliary variables, i.e.,
V1 = Ym − RDA, V2 = A, we can obtain the augmented
Lagrangian function

L(A, V1, V2, G1, G2)

= 1

2
�Yh − DABS�2

F +
λ

2
�V1�1

+βφ(V2)+ μ

2

∥∥∥∥V1 − Ym + RDA+ G1

μ

∥∥∥∥
2

F

+μ

2

∥∥∥∥V2 − A+ G2

μ

∥∥∥∥
2

F

(5)

where μ denotes the penalty parameter and G1, G2 are
the Lagrangian multipliers. By referring to the alternative
method of multipliers (ADMMs), we can split (5) into several
subproblems and solve each subproblem alternatively.

1) Subproblem of A: Subproblem of A can be solved by
minimizing L(A, V1, V2, G1, G2) with respect to A, such that

A = arg min
A

1

2
�Yh − DABS�2

F

+μ

2

∥∥∥∥V1 − Ym + RDA+ G1

μ

∥∥∥∥
2

F

+μ

2

∥∥∥∥V2 − A+ G2

μ

∥∥∥∥
2

F

. (6)
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By setting the derivative of (6) with respect to A to zero,
we can finally acquire a Sylvester equation, which can be
solved analytically and efficiently as done in [15].

2) Subproblem of V1: Subproblem of V1 can be solved by
minimizing L(A, V1, V2, G1, G2) with respect to V1, such that

V1 = arg min
V1

λ

2
�V1�1 + μ

2

∥∥∥∥V1 − Ym + RDA+ G1

μ

∥∥∥∥
2

F

(7)

which has a close-form solution by using the �1 norm mini-
mization operator [18].

3) Subproblem of V2: Subproblem of V2 can be solved by
minimizing L(A, V1, V2, G1, G2) with respect to V2 as

V2 = arg min
V2

βφ(V2)+ μ

2

∥∥∥∥V2 − A+ G2

μ

∥∥∥∥
2

F

. (8)

Based on the plug-and-play technique, the solution of the
problem (8) can be obtained by using a denoising operator as

V2 ← Denoiser

(
A− G2

μ
,
β

μ

)
(9)

where Denoiser(·) is a plugged denoiser, (A − G2/μ) is the
input noisy data to be denoised, and β/μ is the input noise
level of the denoiser. We use the BM3D [17] as the plugged
denoiser to solve the problem (9). BM3D is a state-of-the-art
image denoiser based on an enhanced sparse representation
in transform domain. It is composed of grouping, collabora-
tive filtering, and aggregation. The grouping is realized by
block-matching and the collaborative filtering is accomplished
by shrinkage in a 3-D transform domain.

4) Updating of G1: We update G1 in each iteration as

G1 = G1 + μ(V1 − Ym + RDA). (10)

5) Updating of G2: We update G2 in each iteration as

G2 = G2 + μ(V2 − A). (11)

III. EXPERIMENTS

In this section, we present experiments to assess the perfor-
mance of the proposed method for fusing HSIs and MSIs.

A. Experimental Datasets
We evaluated the performance of the proposed fusion

method using three multiplatform datasets.
1) Paris data is composed of an HSI captured by the

Hyperion and an MSI obtained by the Advanced Land
Imager instruments on board the Earth Observing-1
Mission satellite [5], as shown in Fig 1. Both images
have a size of 72 × 72 pixels. The HSI has 128 spectral
bands. The MSI has nine bands.

2) Lake Tahoe data are composed of an HSI acquired by the
airborne visible infrared imaging spectrometer (AVIRIS)
instrument and an MSI captured by the Sentinel-2A
instrument [13], as shown in Fig. 1. Both images have
a size of 100 × 80 pixels. The HSI has 173 spectral
bands. The MSI has ten bands.

3) Ivanpah Playa data is composed of an HSI acquired by
the AVIRIS instrument, and an MSI captured by the
Sentinel-2A instrument [13], as shown in Fig. 1. Both
images have a size of 128 × 80 pixels. The HSI has
173 spectral bands. The MSI has ten bands.

The LR-HSI was generated by applying a Gaussian filter,
with its variance equal to 1, to the HR-HSI, followed by

Fig. 2. Band-wise PSNR for three datasets. (a) Paris. (b) Lake Tahoe.
(c) Ivanpah Playa.

downsampling every two pixels. Then, white Gaussian noise
(WGN) was added to the LR-HSI and HR-MSI to obtain the
observed LR-HSI and HR-MSI with a 30 and 40 dB SNR,
respectively. The spectral response function was obtained as a
known prior as in [13].

B. Compared Methods

We compared the proposed method with seven state-of-
the-art fusion methods. Generalized Laplacian pyramid hyper-
sharpening (GLPHS) [3] is an adaptation of the generalized
Laplacian pyramid (GLP) method [12] for the fusion of
HSIs and MSIs. Among the matrix factorization-based meth-
ods, we compared the coupled nonnegative matrix factor-
ization (CNMF) [4], low tensor multi-rank (LTMR) [6],
and fusion with spectral variability (FuVar) [13]. For tensor
factorization-based methods, we considered super-resolution
tensor-reconstruction (STEREO) [7], coupled sparse tensor
factorization (CSTF) [8], and coupled tucker decompo-
sitions for hyperspectral super-resolution with variability
(CB-STAR) [14]. Note that FuVar and CB-STAR were pro-
posed recently accounts for spatially and spectrally localized
changes into the fusion. The parameters of the compared
methods were set according to their original references.

C. Experimental Results

We show the mean peak signal-to-noise ratio (MPSNR),
root mean square error (RMSE), spectral angle mapper
(SAM), Erreur Relative Globale Adimensionnelle de Synthèse
(ERGAS), and mean universal image quality index (MUIQI)
of the recovered HSIs for the three datasets in Table I, where
the best results were highlighted in bold. In terms of the
five evaluation indexes, it can be clearly seen that FuVar,
CB-STAR, and the proposed method achieved better recon-
struction performance than other methods because they take
spatially and spectrally localized changes into consideration
while fusing. Among them, the proposed method achieved
considerable better overall reconstruction performance than
FuVar and CB-STAR for the three datasets. The reason why
the proposed method achieved much better fusion performance
boils down to the introduction of �1 norm to incorporate
the image changes between hyperspectral and MSIs and the
introduction of the prior to effectively regularize the subspace
coefficients.

The peak signal to noise ratio (PSNR) values of each
restoration band for the three datasets are presented in Fig. 2.
It can be clearly observed from Fig. 2 that the PNSR values
of the proposed method are significant higher than that of the
competitors at almost all the bands.

For a visual comparison, we present the reconstructed
images and corresponding error images of the 20th band for
Paris data, tenth band for Lake Tahoe data, and 30th band
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TABLE I

QUANTITATIVE INDEXES OF THE PROPOSED METHOD AND COMPARED METHODS ON TESTED DATASETS

Fig. 3. Twentieth band of reconstructed images (first row) and the corresponding error images (second row) for Paris data.

Fig. 4. Tenth band of reconstructed images (first row) and the corresponding error images (second row) for Lake Tahoe data.

for Ivanpah Playa data in Figs. 3–5, respectively. The error
images were obtained by calculating the absolute values of the
differencing images between ground truth and the estimated
images. For Paris data, as few image changes occur, all the
methods achieve comparable fusion results. The error image
of the proposed method has fewer errors and is closer to
the ground truth than other methods. For Lake Tahoe data,
changes mainly occur at the crop circles and around the lake,
as shown in the last column of Fig. 1. For the Ivanpah Playa
data, changes mainly occur in the central part and lower left
corner of the images, as indicated in the last column of Fig. 1.
For Lake Tahoe and Ivanpah Playa data, the reconstructed
images and error images of GLPHS are noisy. Many residuals
remain in the error images of CNMF, STEREO, CSTF, and
LTMR, in particular in the areas of changes. Fewer residuals
left in the error image of FusVar, CB-STAR, and the proposed
method, highlighting the importance of taking images changes
into consideration while fusing. The error images of proposed
method are more close to the ground truth on three datasets,
suggesting that the proposed method is more effective than
FuVar and CB-STAR, which are also methods accounting for
spatially and spectrally localized changes while fusing.

We present the reconstructed spectral curves of a pixel for
three datasets in Fig. 6. It can be observed from Fig. 6 that
spectral curves recovered by the proposed method are more

TABLE II

RECONSTRUCTED MPSNR VALUES OF ABLATION EXPERIMENTS

closer to the ground truth, which means that the proposed
method can retain more accurate spectral features than the
competitors.

Ablation studies were performed to verify the effectiveness
of the contributions involved in the proposed method. First,
we verified the effectiveness of the plugged BM3D denoiser
as the regularizer by setting β to 0 (denoted as Methodβ=0).
Second, we verified the effectiveness of the proposed �1 norm
on the residual term of the MSI by replacing the �1 norm of (4)
with the Frobenius norm (denoted as MethodF). From Table II,
we can see that the MPSNR values of the proposed method
are higher than the other two methods on all the datasets,
demonstrating the effectiveness of the contributions involved
in the proposed method.

D. Parameters Analysis

We show reconstructed MPSNRs on all the datasets with
various parameter settings of k, λ, and β in Fig. 7. It can be
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Fig. 5. Thirtieth band of reconstructed images (first row) and the corresponding error images (second row) for Ivanpah Playa data.

Fig. 6. Reconstructed spectral curves of a pixel in (a) Paris data, (b) Lake
Tahoe data, and (c) Ivanpah Playa data.

Fig. 7. MPSNR values of the proposed method with the changes of
parameters. (a) k. (b) λ. (c) β.

seen from Fig. 7(a) that the MPSNR values of all the datasets
are practically constant when the dimension of subspace is
greater than 5. In this letter, we fixed dimension of subspace
to 8 on all the datasets. From Fig. 7(b), we can see that
the MPSNRs of the Lake Tahoe and Ivanpah Playa data
decrease gradually when λ varies from 0.02 to 0.1, whereas
the MPSNRs of the Paris data remain relatively stable.
By setting λ to 0.02, we could obtain good results for all the
datasets. From Fig. 7(c), we can see that the MPSNRs of the
Lake Tahoe and Ivanpah Playa data increase gradually when
β varies from 0.002 to 0.01, whereas the MPSNRs of the
Paris data remain relatively stable. In this letter, we set β to
0.006 for all the datasets.

IV. CONCLUSION

In this letter, we propose a novel SCFus to fuse multiplat-
form hyperspectral and MSIs based on matrix factorization.
By imposing the �1 norm on the reconstruction error of the
MSI term to promote sparsity, the proposed fusion method
can account for the case in which localized changes occur
between the images obtained from multiplatforms. Meanwhile,
we used a plugged in prior, i.e., BM3D, to regularize the
subspace coefficients effectively. Experimental results suggest
that the proposed method is effective in fusing multiplatform
hyperspectral and MSIs.
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