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Abstract— Hyperspectral imagery (HSI) contains hundreds of
bands, which provide a wealth of spectral information and
enable better characterization of features. However, the excessive
dimensionality also poses a dimensional disaster for subsequent
processing. Fortunately, band selection (BS) gives a straightfor-
ward and effective way to pick out a subset of bands with rich
information and low correlation. Although many hyperspectral
BS methods, especially clustering-based ones, have been proposed
by researchers in recent years, the contextual information of adja-
cent bands and the spatial structural information of materials
are not well investigated. Therefore, in this article, a multiscale
superpixel-level group-clustering framework (MSGCF) has been
proposed for hyperspectral BS. Different from previous, a new
superpixel-level distance measure is elaborately utilized to group
and cluster the spectral bands, which jointly considers the
spectral context and spatial structure information. Concretely,
to preserve the spatial structural information of HSI, multiple
superpixel segmentation is first performed to generate superpixel
maps in multiscales, which enables complementarity of multiple
superpixel segmentation algorithms and adaptation to diverse
scales of land cover types. Second, the grouping and clustering
paradigm is introduced to conduct the contextual information
among bands. Here the maximum points of superpixel-level
KL-�1 distance of adjacent bands are adopted as partition
points to separate bands into groups, which encourages adjacent
bands with strong correlation to be divided into the same
group. Third, a superpixel-level fast density-based clustering
method (SuFDPC) with superpixel-level �2,1 distance is devel-
oped to select representative bands in every group. Finally, BS
results are achieved with a ranking-based voting strategy by
concerning information entropy and frequency of occurrence in
a unified scheme. A series of ablation analyses and experimental
comparisons on four real HSI datasets have been conducted,
as well as similarity comparisons for the selected bands. The
experimental results consistently demonstrated the effectiveness
of our MSGCF approach. The codes of this work will be available
at http://jiasen.tech/papers/ for the sake of reproducibility.
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NOMENCLATURE

I A hyperspectral image cube.
X , Y , B Height, width, and number of bands of

hyperspectral imagery.
T Spatial resolution of hyperspectral

imagery.
K , Nk Number of superpixel scales and number

of superpixels at the kth scale.
G Superpixel cube.
g, p Value and histogram statistic of the pixel.
Wn Number of pixels in the nth superpixel.
D(KL-�1), D(�2,1) KL-�1 and �2,1 distance matrices between

bands.
M, MS KL-�1 distance of adjacent bands before

and after Gaussian smoothing.
e Sequence of partition points.
V Voting metric of the band.
O,O� Results of BS before and after voting.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) captured by hyper-
spectral sensors usually contains hundreds of spec-

tral bands ranging from the visible region (0.4–0.7μm) to
the shortwave infrared region (nearly 2.4μm). They pro-
vide a tremendous amount of spatial and spectral informa-
tion of the objects. With the acquired abundant information,
HSI-oriented processing has become one of the most promis-
ing techniques in numerous fields, including geological explo-
ration [1], ecological sciences [2], disaster prediction [3],
food industry [4], [5], environmental monitoring [6], [7],
astronomy [8], ocean monitoring [9], etc. Nevertheless, the
high dimensionality and redundant band information not only
increases computational complexity, but also results in the so-
called Hughes phenomenon, making practical processing of
HSI data still challenging [10]–[12]. Therefore, dimensionality
reduction is widely adopted in HSI preprocessing, which aims
to eliminate irrelevant and redundant information of HSI data
while retaining as much material discriminative information
as possible [13], [14].
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In practice, feature extraction and band selection (BS) are
the most commonly used methods for the dimensionality
reduction of HSI [15], [16]. Concretely, feature extraction
for HSI aims to build the projections between the original
high-dimensional space and the low-dimensional subspace
via different manners (e.g., high-low, high-higher-low, etc),
which usually presents good classification performance, yet
totally changes the physical characteristics of the original
HSI data [17]–[20]. A number of feature extraction methods
have been proposed in the literature [21]–[23]. For instance,
principal component analysis (PCA) was introduced as a linear
dimensionality reduction technique for HSI [24]–[29], which
projects the high-dimensional data to a low-dimensional sub-
space with principal components maximizing the variance of
the projected data [30]. Independent component analysis (ICA)
also conducts the projection from the high-dimensional space
to a low-dimensional space [31]. Differently, it performs a
linear transformation on the original data, intending to iden-
tify the independent components that make up the feature
space. Furthermore, to deal with nonlinearly separable high-
dimensional data, kernel PCA (KPCA) first introduces kernel
methods to map the original space to a higher-dimensional
linearly separable reproducing kernel Hilbert space (RKHS),
and then performs PCA on the kernel matrix to extract
principal components, with which projecting RKHS to a
low-dimensional space [32]. Besides, nonparametric weighted
feature extraction (NWFE) uses the nonparametric scatter
matrix to reduce the impact of singularity problems [33], while
decision boundary feature extraction (DBFE) extracts the most
informative features based on the decision boundary feature
matrix [34]. Apart from these, a number of wavelet-based fea-
ture extraction methods have also been developed [35]–[39].

Alternatively, BS identifies a subset of bands with rich
discriminative information and weak correlation from the
original bands, which tries to preserve most of the inher-
ent characteristics of HSI data [40], [41]. In particular,
in many hyperspectral application scenarios (e.g., food quality
assessment [42] and crop disease detection [43]), fast and
nondestructive representation is desirable for dimensionality
reduction algorithms, and direct analysis of the selected spectra
without changing the original features is a better choice
to reserve the physical meaning. In general, BS algorithms
can be divided into supervised, unsupervised, and semisu-
pervised methods depending on whether the training set is
utilized [44]. Supervised BS approaches use prior information
to select the most discriminative bands [45], [46], while the
importance of a band obtained by unsupervised methods is
evaluated by various statistical measures or clustering quality
assessment [47]. Unsupervised BS methods are preferable
due to the lack of labeled samples, which could well ensure
the generalization of the selection results. The semisuper-
vised approach uses the association between labeled and
unlabeled sample information to measure the representative-
ness of the bands [48]. BS using improved classification
(BSIC) [49] utilizes edge-preserving filtering to improve the
pixel classification map. BS based on dynamic classifier selec-
tion (BSDCS) [50] filters the classification map to provide
a reference before defining local regions to select bands with

good classification performance. In particular, unsupervised
BS algorithms can be roughly divided into two categories:
ranking-based and clustering-based [40].

Ranking-based BS methods quantify the importance of each
band according to the quantified metrics, and then select the
bands with the highest scores in the ranking sequence. Some
single-band metrics, such as information entropy, signal-to-
noise ratio (SNR), and information divergence (ID), have
been introduced [51]. Maximum variance principal component
analysis (MVPCA) [52] calculates the ranking score of each
band as a weighted sum of the transformed basis vector.
However, the selected bands are usually highly correlated
with each other. Several deep neural network techniques have
also been applied to HSI BS. Attention-based convolutional
neural networks (ACNNs) [53] develop an end-to-end network
for HSI BS and classification by detecting outliers in the
attention map of the band scores. Furthermore, based on the
assumption that the complete set of bands can be reconstructed
from its informative subsets, BS Network (BSNet) [54] uses
a framework consisting of a band attention module (BAM)
and a reconstruction network (RecNet) to learn the band
weight vector, which is then ranked to select bands. Based
on the same assumption, a double attention reconstruction
network (DARecNet) [55] jointly uses a position attention
module (PAM) and a channel attention module (CAM) to
calibrate the band weights and then ranks the entropy rate
of each band in the reconstructed band set to select bands.
With respect to clustering-based approaches, they divide the
original bands into clusters and select the central band from
each cluster to form the final subset. A hierarchical clustering
algorithm for BS has been proposed in [56], which minimizes
the intracluster variance and maximizes the intercluster vari-
ance. Besides, a number of clustering algorithms based on
K-means [57], [58], affinity propagation (AP) [59], [60], and
density clustering [61], [62] have been proposed. Concretely,
K-means divide the bands into K clusters by iteration, while
AP treats all data points as potential clustering centers and
clusters them according to the correlation between bands.
Moreover, concerning the density-based clustering algorithms,
the density of the region where a data point is located is
measured by the number of neighbors in the neighborhood.

In general, ranking-based BS only considers the scoring
criteria of individual bands without considering the correlation
information between bands, which makes the selected bands be
stable enough, but the correlation between bands is relatively
high. In contrast, clustering-based BS methods favor the selec-
tion of bands with low correlation and less redundant informa-
tion, but the selected bands present a lack of stability (refer
to the consistency of the bands when different numbers of
bands are selected, i.e., the number of bands that change when
adjacent numbers of bands are selected), and the algorithm is
of high time complexity. Therefore, it is desirable to integrate
both methods in a single scheme. Recently, several algorithms
combining ranking-based and clustering-based strategies have
been proposed, including enhanced density-peak-based clus-
tering algorithm (EFDPC) [63], fast and robust principal
component analysis on Laplacian graph (FRPCALG) [64],
importance-assisted column subset BS (iCSBS) [65], optimal
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clustering framework (OCF) [66], and local potential-based
clustering (LPC) algorithm [67]. Among them, EFDPC
extracts the clusters by ranking a density-based measure,
which selects the most reliable bands by weighting the ranking
scores of each band and progressively narrowing the cutoff
threshold. OCF develops an OCF to search for the best
clustering results on the whole band set, then uses the ranking
on clusters strategy (RCS) method to evaluate the bands in
each cluster, and finally sorts them and selects the top bands.

However, the spectral bands are usually considered to be
disordered when performing clustering procedure, which may
result in the ignorance of the contextual information across
the spectral bands. Therefore, grouping-based BS approaches
have been proposed, such as adaptive subspace partition
strategy (ASPS) [68] and fast neighborhood grouping method
(FNGBS) [69]. ASPS first divides the HSI cube into several
subcubes by maximizing the ratio of interclass distance to
intraclass distance and then selects the least noisy band in each
cube. FNGBS, on the other hand, uses a coarse-fine strategy
to spatially divide the HSI data into several groups before
acquiring a relevant and informative subset of bands based
on the local density and information entropy. However, the
key parameter (i.e., the number of grouping) should be preset,
which is less applicable for HSI data with various number of
spectral bands. Meanwhile, the spatial structure information
of each band is not fully exploited.

Fortunately, superpixel segmentation partitions image into
multiple semantic subregions with similar spatial structure.
The contextual similarity allows regions with homogeneity
to be aggregated together. Superpixel extraction has been
extensively studied for HSI classification through preprocess-
ing [70], [71] or post-processing [72], [73]. But superpixel
segmentation for HSI BS has not been well exploited.

Motivated by the idea of adaptive grouping and superpixel-
based distance measure, we propose a multiscale superpixel-
level group clustering framework (MSGCF) for HSI BS. First,
to preserve the spatial structural information of HSI, multiple
superpixel segmentation is performed to generate superpixel
maps in multiscales, which enables complementarity of mul-
tiple superpixel segmentation algorithms and adaptation to
diverse scales of land cover types. Second, the grouping
and clustering paradigm is introduced to conduct the contex-
tual information among bands. Here the maximum points of
superpixel-level Kullback–Leibler (KL)-�1 distance of adja-
cent bands are adopted as partition points to separate bands
into groups, which encourages adjacent bands with strong
correlation to be divided into the same group. In this way, the
following grouping oriented clustering procedure is possible to
select bands with stronger discriminability. Third, a superpixel-
level fast density-based clustering method (SuFDPC) with
superpixel-level �2,1 distance measure is developed to preform
group-wise clustering. Finally, BS results are achieved with
a ranking-based voting strategy by concerning information
entropy and frequency of occurrence in a unified scheme.
Fig. 1 shows the schematic of the MSGCF approach to make
the method more easily to be understood.

Three main contributions of our MSGCF method are sum-
marized as follows.

1) First, superpixel-level distance measure is comprehen-
sively utilized to measure the similarity between bands
instead of pixel-based, which jointly considers the spec-
tral context and spatial structure information. Taking
advantage of the homogeneity of superpixel regions,
spatial structure information is integrated into the dis-
tance metric. In addition, due to the complementarity of
different superpixel segmentation methods and the vari-
ability of scales for different land cover types, we com-
bine different superpixel segmentation algorithms and
different scales of superpixels to leverage the structural
information and the spatial consistency of HSI data.

2) Second, we adopt a group-clustering framework to
divide the HSI cube into multiple groups, and then
cluster the bands within each group, which effectively
utilizes the numerous contextual information of the
bands and makes the final selected bands more dispersed
and less correlated. Besides, the bands are grouped by
using the superpixel-level KL-�1 distances of adjacent
bands after Gaussian smoothing, and the extreme value
points are used as segmentation points to better measure
the correlation of adjacent bands. Since the grouping
procedure is carried out in an adaptive way rather than
presetting the number of groups by hand, the general-
ization of the proposed method can be ensured.

3) Finally, a SuFDPC with superpixel-level �2,1 distance
measure is proposed to select representative bands in
every group. In order to obtain the final result of
BS, joint information entropy and band appearance
frequency are introduced as the scoring standard, and the
final selected bands are determined by metric ranking-
based voting. The codes of this work will be available at
http://jiasen.tech/papers/ for the sake of reproducibility.

The descriptions of all the important mathematical notations
in this article are summarized in Nomenclature. The rest of
this article is organized as follows. Section II briefly reviews
the superpixel segmentation and ranking-based clustering algo-
rithms. Section III presents the proposed MSGCF approach
in detail. Experiments on four real HSI datasets are given in
Section IV. Finally, Section V concludes this article with some
remarks.

II. PRELIMINARIES

In this section, we briefly review three different superpixel
segmentation methods and density peak clustering methods
that are relevant to the proposed method.

A. Superpixel Segmentation

It can be found that the surface materials are generally con-
tinuous in spatial distribution, and the neighboring pixels are
highly correlated by observing the real land cover distribution
of the HSI datasets, which means that the land cover types in
the same region may have the same class labels. Therefore, it
is desirable to extract homogeneous regions in HSI by the
consistency within the superpixels to characterize the structural
information of materials. In natural image processing, super-
pixel segmentation algorithms can be broadly classified into
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Fig. 1. Overall framework of the proposed MSGCF approach for HSI BS. First, three superpixel segmentation algorithms, i.e., ERS, SLIC, and SNIC,
are applied to generate superpixel representations of HSI data at K different scales, respectively. The data streams corresponding to the three segmentation
algorithms are denoted as three branches with three colors (blue, green, red). Second, the group-clustering paradigm is utilized, and superpixel representations
of HSI at 3K scales are grouped and clustered in corresponding branches, generating a total of 3K intragroup clustering results. At last, the final BS results
are obtained by metric ranking-based voting strategy, performed on all the 3K intragroup clustering results.

two categories: graph-based methods (normalized cut [74],
Felzenswalb and Huttenlocher [75], superpixel lattice [76],
constant intensity superpixels [77], entropy rate superpixels
(ERS) [78]) and gradient-based methods (watershed [79],
mean shift [80], quick shift [81], turbopixels (TP) [82], simple
linear iterative clustering (SLIC) [83], simple noniterative
clustering (SNIC) [84]). Among them, the ERS [36], [70],
[85], [86], SLIC [87]–[90] and SNIC [7], [21] algorithms
are widely used and have been proven to be effective in
HSI processing.

1) Entropy Rate Superpixel (ERS): ERS is an efficient
superpixel segmentation algorithm that maps an image into
an undirected graph G = (P, E), in which each pixel is
considered as a vertex, where P denotes the set of vertices
and E denotes the set of edges. Then the topology of the
graph is maximized, and the objective function is optimized
by a greedy algorithm to obtain N homogeneous superpixels
of similar size. The objective function consists of two parts: the
entropy rate of random walk on graph H(A) and the balancing
term T (A), where A is the selected edge. Then, the objective
function of ERS is defined as

max
A

H(A)+ λT (A) s.t. A ⊆ E (1)

where λ ≥ 0 is the adjustable weighting factor between two
terms. The entropy rate is conducive to the formation of
compact and homogeneous clusters, while the balancing term
is designed to constrain the size of superpixels and reduces
the number of superpixels.

2) Simple Linear Iterative Clustering (SLIC): SLIC is a
local iterative clustering algorithm based on the relationship of
color similarity and spatial distance, which can be considered
as an application of the K-means clustering algorithm to
generate superpixels. It is a process of transforming an image
into a feature vector in CIELAB color space and spatial

coordinates, and then locally clustering image pixels to obtain
regular superpixels by constructing a distance measure for
feature vector [91]. First, the image needs to be initialized
into N superpixel clustering centers of the same size, and
the distance D is computed within a 2Q × 2Q block region
around the superpixel centers, where Q = √

W/N , and W is
the number of pixels in the image. Then, the distance measure
between the clustering center i and the pixel j within the block
is given by

Di, j =
√√√√(D(S)

i, j

Q

)2

+
(

D(C)
i, j

ω

)2

(2)

where D(S) and D(C) are the spatial distance and the color
distance, respectively, while ω is the maximum color dis-
tance within a given cluster. With spatial position [x, y] and
CIELAB color [a, b, c], the spatial distance and the color
distance can be calculated by

D(S)
i, j =

√
(xi − x j)2 + (yi − y j)2 (3)

D(C)
i, j =

√
(ai − a j)2 + (bi − b j)2 + (ci − c j)2. (4)

After the initial clustering, the clustering centers are iteratively
updated in accordance with the mean values of the distance
measures in the corresponding clustering blocks until the
clustering centers of each pixel no longer change.

3) Simple Noniterative Clustering (SNIC): SNIC is an
improved version of the SLIC superpixel segmentation with
the use of the same distance measure as defined in (2).
However, unlike SLIC, SNIC clusters pixels without using
the K-means iterations while explicitly enforcing connectivity
from the beginning. Starting from the initial centers, it uses
a priority queue to choose the next pixel to add to a cluster,
then selects the pixel with the smallest distance from the center
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Fig. 2. Schematic of the multiscale superpixel-level group clustering procedure (taking the ERS method as an example). First, The KL-�1 and �2,1 distance
maps between all bands are calculated using the superpixel cubes segmented by ERS at K scales, separately. (a) All bands are adaptively separated into groups
with the maximum points of KL-�1 distance between adjacent bands as partition points. (b) Band clustering using SuFDPC with �2,1 norm is performed to
select the most informative bands from each group.

as a candidate. Finally, the element-adjacent pixel is labeled
and pushed into the priority queue, and this process is repeated
until the priority queue is empty.

B. Density Peak-Based Fast Clustering

The density peak-based fast clustering algorithm (FDPC) is
an effective algorithm to find cluster centers based on local
density ρi and distance δi from points of higher density [92].
Points with relatively high ρi and δi tend to be the cluster
centers according to FDPC. Respectively, ρi and δi can be
calculated by

ρi =
∑

j

χ(Di, j − dc) (5)

δi =
{

max j (Di, j ), if ρi = max(ρ)

min j :ρ j>ρi (Di, j ), otherwise
(6)

where dc is the cutoff distance, Di, j is the distance between the
i th and the j th band, χ(x) = 1 if x < 0, and χ(x) = 0 other-
wise. With spectral bands as points to be selected, FDPC has
been introduced to hyperspectral BS. Jia et al. [63] proposed
an enhanced version of FDPC (EFDPC), which calculates the
weight of each band by weighting the normalized local density
and the distance within the cluster, making the bands have
different weight, and outperforms the FDPC for hyperspectral
BS. The new calculation formula of local density ρi is defined
as

ρi =
B∑

i=1,i �= j

exp

(
−
(

Di, j

dc

)2
)

(7)

where B is the number of bands, and ρi and δi are min-max
normalized by

ρ = (ρ − ρmin)./(ρmax − ρmin) (8)

δ = (δ − δmin)./(δmax − δmin) (9)

where ./ is the element-wise division operator. The ranking
score ψi for any band i is finally obtained by

ψi = ρi × δi
2. (10)

The larger ψi is, the more likely the i th band is to be selected
as a cluster center.

III. MULTISCALE SUPERPIXEL-LEVEL GROUP

CLUSTERING FRAMEWORK (MSGCF)

Fig. 1 shows the overall illustration of our proposed
MSGCF for hyperspectral BS, which is mainly composed of
three steps. First, three superpixel segmentation algorithms,
including ERS, SLIC, and SNIC, are applied to generate the
superpixel representation of HSI data in multiscales. Second,
the group-clustering paradigm is developed, which is capable
of exploiting local contextual information more effectively.
Meanwhile, the schematic of multiscale superpixel-level group
clustering procedure (taking the ERS method as an example)
is displayed in Fig. 2. In this procedure, superpixel cubes are
utilized to compute the superpixel-wise KL divergence and
�2 norm between bands, after which the �1 norms of the
superpixel-wise KL divergence and �2 norm are calculated
to acquire the KL-�1 and �2,1 distance maps between all
spectral bands. Third, all bands are adaptively separated into
groups with the maximum points of KL-�1 distance between
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Fig. 3. Segmentation maps with different number of superpixels (N1, N2,
and N3) by ERS (first row), SLIC (second row), and SNIC (third row) on the
IP HSI dataset.

adjacent bands as partition points, and then band clustering
using SuFDPC with �2,1 norm is performed to select the
most informative bands from each group. Finally, the selected
bands at various scales are merged by metric ranking-based
voting to obtain the final BS results. With all these carefully
designed strategies, MSGCF has the ability to pick out the
most representative bands with strong discrimination.

A. Multiple and Multiscale Superpixel Segmentation

It is meaningful to incorporate superpixel segmentation
into HSI band distance computation since the homogeneity
within superpixels allows the introduction of spatial structural
information of materials. Since three superpixel segmenta-
tion algorithms are originally designed for RGB images,
PCA processing is applied on HSI before performing super-
pixel segmentation, downscaling them to three dimensions.
Specifically, the first three principal components were used
to map the raw hyperspectral data into 3-D space, which
preserved the primary hyperspectral information and generated
the base image for superpixel segmentation.

To maximize the effect of superpixel, the generated super-
pixel representations need to have properties such as boundary
adhesion, compactness, and regularity. However, all these
semantic descriptions cannot be characterized by a single
superpixel segmentation algorithm. Specifically, ERS has good
boundary adhesion because of the segmented superpixels with
shape adaptability, while SLIC and SNIC exhibit good com-
pactness and regularity as the algorithms enforce connectivity
from the start. Fig. 3 shows the segmentation maps with
different number of superpixels by ERS, SLIC and SNIC
on the widely used Indian Pines (IP) HSI dataset. It can be
observed that these three superpixel segmentation algorithms
usually result in different styles of superpixel shapes. Further-
more, various HSI datasets can have different feature classes,
different feature classes contain different spectral features, and
the features after dimensionality reduction are also different,
so the results of superpixel segmentation methods acting on

Fig. 4. Computation process of the superpixel-level KL-�1 and �2,1 distance
measure. The superpixel-based KL-�1 and �2,1 distances first consider each
homogeneous region of the superpixel segmentation as a whole, and then
calculate the KL divergence or �2 distance between all bands in each
superpixel to obtain a distance matrix (2-D, B × B). These matrices with
each superpixel region are stacked together to obtain the 3-D distance cube
B × B × Nk . Finally, �1 norm of the 3-D distance cube is derived to obtain
the distance matrix (2-D, B × B) between the entire image bands.

different datasets are not the same. There are still not a general
rule to decide which superpixel segmentation methods to use
on a certain dataset. Therefore, in this study, a combination of
multiple superpixel segmentation methods is used to cope with
different types of datasets to obtain superpixel segmentation
maps with richer structure information.

Likewise, since the scales of various land cover types
in spatial domain are usually totally different from each
other, a single scale of superpixel is clearly not sufficient
to accommodate diverse ground distributions. Therefore, mul-
tiscale superpixel segmentation is introduced by performing
superpixel segmentation procedure with different number of
superpixels, as displayed in Fig. 3. As for the inconsistent
acquisition specifications of different HSI datasets, the number
of superpixels extracted at each scale should vary according to
the spatial dimension and spatial resolution of HSI. Concretely,
for an HSI cube I ∈ R

X×Y×B , where X , Y represent the spatial
dimensions, and B is the number of bands, the number of
superpixels at the kth scale can be calculated by

Nk =
⌊

k × X × Y

T 2

⌋
, k = 1, . . . , K (11)

where T represents the spatial resolution of HSI, and parame-
ter K denotes the total number of superpixel scales. In the
experiments, K is set as 3 to make a trade-off between
classification accuracy and computational complexity. Fig. 3
shows the segmentation maps on the IP HSI dataset at three
different superpixel scales, N1, N2, and N3.

Let G ∈ R
X×Y×B denote the achieved superpixel cube

(as shown in Fig. 4, the dimension of G is the same as I that
contains the structural information of materials), and the
corresponding superpixel cubes generated by ERS, SLIC, and
SNIC at the kth scale are, respectively, denoted as Gk

ERS, Gk
SLIC

and Gk
SNIC (k = 1, . . . , K ), which are used in Fig. 1 and 2.

Since the subsequent processing of superpixel cube of three
methods is basically similar to each other, for the sake of
brevity, we omit the subscripts and use Gk in the following
description directly. Besides, the nth superpixel at the kth scale
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is formulated as Gk
n = [gk

n,1, . . . , gk
n,w, . . . , gk

n,W k
n
] ∈ R

W k
n ×B ,

where gk
n,w ∈ R

B is the wth pixel of the nth superpixel, and
W k

n is the total number of pixels in the nth superpixel.
KL divergence and �2 norm are two widely used distance

measures between bands. Normally, they are calculated in
pixel level. Alternatively, in the proposed MSGCF method,
KL divergence and �2 norm measures between bands are
computed in superpixel level. And then, �1 norm is adopted
to integrate the superpixel-wise KL divergence and �2 norm,
obtaining the KL-�1 and the �2,1 distance matrix between
bands, which introduces the structural information within
superpixel homogeneous regions. The calculation procedure
of KL-�1 and �2,1 distance matrix is formulated as

D(KL-�1),k
i, j =

Nk∑
n=1

W k
n∑

w=1

∣∣∣∣∣pk
n,w,i ln

pk
n,w,i

pk
n,w, j

∣∣∣∣∣ (12)

D(�2,1),k
i, j =

Nk∑
n=1

√√√√ W k
n∑

w=1

(gk
n,w,i − gk

n,w, j)
2

(13)

where D(KL-�1),k
i, j and D(�2,1),k

i, j , respectively, represent the
KL-�1 and �2,1 distance between the i th and the j th bands of
the nth superpixel at the kth scale, and pk

n,w,i and pk
n,w, j are the

histogram statistics of the wth pixel in the nth superpixel of the
i th and the j th bands. Fig. 4 visually illustrates the calculation
process of the superpixel-level KL-�1 and �2,1 distance mea-
sure. Evidently, superpixel-wise calculation process is capable
of preserving the spatial structure of HSI data, which helps to
better represent the correlation between bands.

B. Adaptive Band Grouping

High similarity usually exists among adjacent bands in HSI.
Here, KL-�1 defined in (12) is utilized to divide the spectral
bands into multiple groups. The larger the KL-�1 values, the
greater the irrelevance between these two bands. As displayed
in Fig. 2(a), the maximum points of KL-�1 correlation of
adjacent bands are regarded as the partition points, which
is utilized to divide the bands into appropriate groups after
performing a Gaussian smooth filtering step on the
KL-�1 decision curve. More precisely, the KL-�1 distance
measure of the kth scale is expressed as

Mk(i) = D(KL-�1),k
i,i+1 , i = 1, 2, . . . , B − 1 (14)

where Mk represents the KL-�1 distance of adjacent bands,
and Mk(i) denotes the i th value of Mk . After applying
Gaussian smoothing operation on Mk , the smoothed curve Mk

S
is achieved as

Mk
S = Mk ⊗ S (15)

where ⊗ is the convolution operation. S is the Gaussian kernel,
which is formulated as

S(i) = 1√
2πσ

e− i2

2σ2 (16)

where parameter σ is set as the variance of the Mk . Fig. 5
illustrates the KL-�1 distance measure before (orange curve)
and after (blue curve) Gaussian smoothing. The partition

Fig. 5. Decision curves of band grouping. Before band grouping, Gaussian
smoothing is performed on the superpixel-level distance KL-�1 of adjacent
bands to ensure reasonable grouping while alleviating the influence of noise.
The figure illustrates the KL-�1 distance measure before (orange curve) and
after (blue curve) Gaussian smoothing, and the partition points are marked by
green inverted triangles.

points are marked by green inverted triangles, and the partition
points at the kth scale can be determined by

ek(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 , if u = 1
i , if u > 1, Mk

S(i) > Mk
S(i − 1) and

Mk
S(i) > Mk

S(i + 1), i ∈ Z,
ek(u − 1) < i < B

(17)

U = length(ek) (18)

ek(U + 1) = B (19)

where U is the number of groups after band grouping. It can
be easily found from (17) that the number of groups is adaptive
to various HSI data rather than determined by hand, and thus
the generalization of the proposed band grouping method is
ensured. Meanwhile, the discriminative ability of following
clustering procedure can also be enhanced.

C. Superpixel-Level Fast Density Peak Clustering (SuFDPC)

After band neighborhood grouping, all bands are separated
into groups, as shown in Fig. 2(b). To pick out the most
representative and informative bands from each group, we pro-
posed a superpixel-level fast density peak clustering (SuFDPC)
algorithm, which is more suitable than EFDPC for group
clustering with limited bands. More precisely, SuFDPC has
three enhancements over EFDPC. First, traditional Euclidean
distance is replaced with superpixel-level �2,1 distance measure
[as computed in (13)], which could well represent the spatial
homogeneity of materials. It has the ability to better evaluate
the intraclass similarity and interclass variability, and the local
density ρi in the uth group is calculated by

ρi =
ek(u+1)∑

i, j=ek (u)+1,i �= j

exp

⎛
⎝−

(
D(�2,1),k

i, j

de

)2
⎞
⎠ (20)
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where de is the cutoff threshold. Second, it can be easily found
that the cutoff distance de has a critical impact on ρi , which
should change with the group situation. Let le denotes the
length of the group, and the length of the uth group can be
directly computed by

le(u) = ek(u + 1)− ek(u), u = 1, 2, . . . ,U. (21)

If the value of le is higher, more bands should be selected, and
the value of de should be correspondingly smaller. Therefore,
a heuristic manner for de is proposed as follows:

de = dinit

exp (le/B)
(22)

where dinit represents the initial value of the cutoff distance,
which is empirically defined as the value of position at
2% × le × (le − 1) of the sorted sequence from low to high in
D(�2,1),k (excluding elements of zero). Third, although EFDPC
can select bands with weak correlation, the selected bands
are not informative enough. To alleviate the above problem,
we introduce information entropy Hi as a factor to update the
clustering ranking score ψi , which considers both correlation
and representability of bands. Concretely, the ranking score ψi

and information entropy of the i th band Hi are, respectively,
defined by

ψi = ρi × δi × Hi (23)

Hi =
B∑

i=1

pi log pi (24)

where pi is the histogram statistic of the gray level of the i th
band. Similarly, ρi , δi , and Hi are normalized to [0, 1] as (8)
and (9). After applying the proposed SuFDPC on all the
U groups, the intragroup clustering results is represented as O.
As shown in Fig. 1 and 2, the intragroup clustering results
of ERS, SLIC, and SNIC at the kth scale are, respectively,
denoted as Ok

ERS, Ok
SLIC, and Ok

SNIC.

D. Metric Ranking-Based Voting

With respect to the BS procedure of our MSGCF, the
superpixel-level distance matrices between adjacent bands at
multiple scales are usually different, resulting in different band
grouping results. Furthermore, the bands selected by SuFDPC
at each group are also different from each other. To obtain the
final BS results, we introduce a voting strategy by joint consid-
ering information entropy Hi [defined in (24)] and frequency
of occurrence fi , which encourages more informative bands
to be selected. The final selected bands are determined by a
metric ranking strategy, and the voting metric Vi is defined as

Vi = fi × Hi . (25)

As shown in Fig. 1, the intragroup clustering results have a
total number of 3K sets of band results. We select the required
number of bands according to the value of Vi in descending
order to achieve the final result O�.

IV. EXPERIMENTS

To estimate the performance and verify the validity of
our proposed MSGCF, four real-world HSI datasets with
different spatial resolutions, i.e., IP dataset, Kennedy Space
Center (KSC) dataset, Houston 2013 (HU) dataset, and
Salinas Valley (SV) dataset were employed to conduct the
experiments.

Several popular BS techniques, including two ranking-based
methods (ID [51] and MVPCA [52]), two clustering-based
methods (K-centers [93] and AP [59]), three methods combin-
ing ranking-based and clustering-based strategies (FDPC [92],
EFDPC [63] and OCF [66]), two grouping-clustering method
(ASPS [68] and FNGBS [69]), uniform BS (UBS [52]),
in which the bands are selected uniformly, and three
deep learning-based methods (ACNN [53], BSNet [54],
and DARecNet [55]) were selected as comparison methods.
Regarding the classification manner, we used three common
classifiers to evaluate the representativeness of the selected
bands, i.e., K-Nearest Neighbor (KNN), Random Forest (RF),
and Support Vector Machine (SVM) classifiers. Since classi-
fiers are only used to justify the representativeness and impor-
tance of selected bands, we believe that different parameters
of classifiers have the same impact on the various compared
BS methods. Hence, the number of neighbors in KNN is fixed
as 3, the number of decision trees in RF is fixed as 500 in
the revision, while the parameters of the SVM were set as the
default of library for support vector machine (LIBSVM) [94].

We verified the validity and robustness of the compared
methods from two perspectives, i.e., different number of bands
and different number of training samples. For experiments with
different numbers of bands, we randomly selected ten labeled
samples per class according to Tables I–IV as training set and
the remainder as test samples. With respect to experiments
with different number of training samples, ten bands were
fixedly selected from each dataset. The experimental results
were averaged by ten independent runs to reduce the random-
ness. Before presenting the detailed results, the number of
ten bands chosen by different methods on the four datasets is
listed in Table V, which are utilized to conduct the following
comparison. It is worth pointing out that the chosen bands are
kept unchanged during the classification procedure since all
the BS methods are in an unsupervised manner and unrelated
to the training samples.

In terms of the criteria metrics, overall accuracy (OA)
and Kappa coefficient with standard deviation were used as
measures of accuracy in the experiments. Specifically, OA is
the ratio between the correct prediction of the model on all
test sets and the total number, and the Kappa coefficient is a
statistic widely used to measure the agreement of classification
results [95], which represents the ratio of error reduction
between classification and completely random classification.

A. Indian Pines Dataset (IP)

The first dataset we used in the experiments was captured by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over the agricultural area of northwestern Indians
in 1992. The dataset covers a scene of 145 × 145 pixels with
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Fig. 6. False-color map and ground-truth map of the IP dataset (16 land
cover types).

TABLE I

LAND COVER TYPES WITH NUMBER OF
SAMPLES PER CLASS FOR THE IP HSI

a spatial resolution of 20 m per pixel. The imaging wavelength
range of the AVIRIS imaging spectrometer is 400–2500 nm,
and it sequentially images ground objects in 220 continuous
bands. After discarding 20 bands that could not be reflected
by water, 200 bands were retained for experiments. Fig. 6 and
Table I provide a detailed display of the dataset containing
10 366 labeled pixels and 16 ground-truth classes, most of
which are different types of crops, including one-third of
forest and two-thirds of agriculture or other natural perennial
vegetation.

Fig. 7 reports the classification accuracy of all the compared
methods by selecting 5–50 bands on the IP dataset. Mean-
while, the accuracy with all bands is also given, as illustrated
in the dotted line with black color. In this figure, it can be
easily seen that the ranking-based methods (ID and MVPCA)
always had lower classification accuracy than the clustering-
based methods, since the bands selected by the ranking-based
methods are usually highly correlated. Similarly, the ACNN
algorithm performs not well when the number of bands is
small, which is much improved when the number of selected
bands becomes large. With respect to the UBS method, the
classification performance is not satisfactory since the internal
spectral characteristics of various materials have not been well
exploited. In addition, the grouping-based methods (FNGBS)
performed better than three deep learning-based methods
(ACNN, BSNet, and DARecNet). However, the increase in
the number of bands does not necessarily lead to an increase
in classification accuracy, due to the redundancy and noise
introduced by the additional bands. Nevertheless, our MSGCF

Fig. 7. Performance versus the number of selected bands of compared
methods on the IP dataset with (a) OA and (b) Kappa using KNN classifier,
(c) OA and (d) Kappa using RF classifier, and (e) OA and (f) Kappa using
SVM classifier.

always provides the best in most cases on the dataset, validat-
ing the effectiveness of the proposed approach.

To verify the robustness of the proposed MSGCF method,
Fig. 8 displays the effect of the training samples per class
ranging from 3 to 50 on the classification accuracy of the
IP dataset. The rising curves prove that the larger the number
of training samples, the greater the classification accuracy.
Similar to the above, it can be clearly found from these figures
that the grouping-based strategy plays an important role in
hyperspectral BS in most cases, and our MSGCF constantly
maintains the highest classification accuracy compared with
the other methods.

Moreover, band correlation is adopted to measure the rep-
resentativeness of the selected bands. The correlation between
the selected bands is computed by [63]

Cor = 1 − 2

b(b − 1)

b∑
i, j=1,i< j

DCiC j (26)

where b is the number of selected bands, and C are the indexes
of the selected bands. The smaller the value, the weaker the
correlation, indicating the effectiveness of the BS method. The
results are demonstrated in Fig. 9, in most cases, the bands
selected by our MSGCF present low correlations. In contrast,
MVPCA and ID methods select bands with high correlations,
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Fig. 8. Performance versus the number of training samples per class of
compared methods on the IP dataset with (a) OA and (b) Kappa using KNN
classifier, (c) OA and (d) Kappa using RF classifier, and (e) OA and (f) Kappa
using SVM classifier.

Fig. 9. Correlation measures of different numbers of selected bands by
compared methods on the IP dataset.

which is consistent with the basic characteristics that they
ignore correlations in the selected bands.

B. Kennedy Space Center Dataset (KSC)

The second dataset was captured from an altitude of approx-
imately 20 km by the AVIRIS sensor at the KSC in Florida on
March 23, 1996 [96]. The spectral range of the KSC dataset
is 400-2500 nm with 224 bands and a geometric resolution
of 18 m per pixel. After removing water absorption and low

Fig. 10. False-color map and ground-truth map of the KSC dataset (13 land
cover types).

TABLE II

LAND COVER TYPES WITH NUMBER OF SAMPLES
PER CLASS FOR THE KSC HSI

SNR bands, 176 bands were used for the analysis in the
experiments. The dataset contains 421 × 444 pixels, and there
are 5211 labeled samples from 13 different land cover types
in the image (see Fig. 10). The number of samples in each
class is explicitly listed in Table II.

The classification accuracy increases with the number of
bands and training samples on the KSC dataset, which can be
found in Fig. 11 (as the classification accuracy results of Kappa
are similar to OA, the remaining three datasets only show the
classification accuracy results of OA). Of these, our MSGCF
method consistently holds the best results, with the two
grouping-based methods (ASPS and FNGBS) coming in just
behind it. The deep learning-based method BSNet performed
inconsistently, with good and bad results, while the DARecNet
and ACNN methods showed unsatisfactory results on this
dataset. In addition, Fig. 12 displays the band correlations
for various band selected methods on the KSC dataset. It can
be seen that ID, MVPCA, and DARecNet methods have the
strongest correlations, while MSGCF method has a weaker and
stable correlation, indicating the representativeness of bands
selected by our proposed method.

C. Houston 2013 Dataset (HU)

The third dataset was acquired by the ITRES Compact
Airborne Spectrographic Imager (CASI)-1500 sensor, pro-
vided by the 2013 IEEE Geoscience and Remote Sensing
Society (GRSS) Data Fusion Competition [97]. The image
scene was captured over the University of Houston cam-
pus and its adjacent areas. It covers a spectral range of
380–1050 nm, with 144 bands. The spatial size of the
dataset is 349 × 1905, and the ground-sampling distance
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Fig. 11. OA (%) results of compared methods versus the number of selected
bands using (a) KNN, (c) RF, and (e) SVM classifier, and versus the number
of training samples per class using (b) KNN, (d) RF, and (f) SVM classifier
on the KSC dataset.

Fig. 12. Correlation measures of different numbers of selected bands by
compared methods on the KSC dataset.

is 2.5 m per pixel. A total number of 15 029 samples
from 15 land covers were labeled (see Fig. 13). The number
of samples per class is clearly listed in Table III.

Fig. 14 separately reports the OA of all the compared
methods by selecting different numbers of bands and training
samples per class on the HU dataset. For most methods, it is
logical that the classification accuracy increases as the number
of samples increases. As with the previous datasets, ID and
MVPCA methods show the worst results, while the curve of

Fig. 13. False-color map and ground-truth map of the HU dataset (15 land
cover types).

TABLE III

LAND COVER TYPES WITH NUMBER OF SAMPLES

PER CLASS FOR THE HU HSI

ACNN method is very unstable. Evidently, the classification
results of most clustering-involved methods are relatively
close, but they have different degrees of fluctuation, whereas
MSGCF provides the most stable and accurate performance,
indicating that our method is a valid option for HSI BS.

D. Salinas Valley Dataset (SV)

The last dataset is an image of the SV in California, USA,
which was also acquired by the AVIRIS sensor. The coverage
area of the SV dataset consists of 512 × 217 samples, with
224 spectral bands and a spatial resolution of 3.7 m per
pixel. Likewise, we generally use images from 204 bands after
removing the 20 bands that cannot be reflected by water. In the
image, 54 129 pixels were labeled and the ground truth map
of all labeled samples is shown in Fig. 15, with 16 land cover
categories provided, details of which are given in Table IV.

The classification accuracy results for the SV dataset are
shown in Fig. 16. We can find that a few bands and training
samples can also give decent classification accuracy results for
most of the methods, mainly due to the high spatial resolution
of the SV dataset. Likewise, the MSGCF method remains a
better performer in most cases.

Table VI quantitatively lists the classification accuracy of
various compared methods on four HSI datasets, where ten
bands are selected. Evidently, the proposed MSGCF remains
highly advantageous over the compared ones. Since more
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Fig. 14. OA (%) results of compared methods versus the number of selected
bands using (a) KNN, (c) RF, and (e) SVM classifier, and versus the number
of training samples per class using (b) KNN, (d) RF, and (f) SVM classifier
on the HU dataset.

Fig. 15. False-color map and ground-truth map of the SV dataset (16 land
cover types).

structural description and contextual information is embedded
in the selected bands by the proposed method, these advan-
tages allow MSGCF to select bands with strong representa-
tiveness and low redundancy.

E. Ablation Studies Toward Multiscale Superpixel
Segmentation

To verify the rationality of fusing three different superpixel
segmentation methods, the proposed MSGCF was compared
with the versions of a single superpixel segmentation method

Fig. 16. OA (%) results of compared methods versus the number of selected
bands using (a) KNN, (c) RF, and (e) SVM classifier, and versus the number
of training samples per class using (b) KNN, (d) RF, and (f) SVM classifier
on the SV dataset.

TABLE IV

LAND COVER TYPES WITH NUMBER OF

SAMPLES PER CLASS FOR THE SV HSI

and the versions combining two superpixel segmentation meth-
ods in the same framework (as shown in Fig. 2).

Figs. 17–20 show in detail the results of the evaluation
metrics with various number of selected bands and number
of training samples per class on the four datasets, separately,
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TABLE V

TEN SELECTED BANDS USING DIFFERENT BS METHODS
ON FOUR DIFFERENT DATASETS

where RF was adopted as the classifier. As can be seen
from these curves, the classification results of MSGCF, i.e.,
the fusion of three superpixel segmentation methods, have
higher accuracy and stability than other results containing only
a single or two segmentation methods. Furthermore, it can
be seen from these figures that three different superpixel
segmentation methods have their own advantages on different
datasets. The SLIC method is better than the ERS and SNIC
methods on the KSC dataset, while the ERS method can
achieve better results on the HU and SV datasets, but the SNIC
method only performs best on the IP dataset. This suggests that
the single superpixel segmentation method is not applicable
to all hyperspectral datasets. Experimental results consistently

Fig. 17. Ablation results of multiscale superpixel segmentation versus the
number of selected bands with (a) OA and (b) Kappa, and versus the number
of training samples with (c) OA and (d) Kappa on the IP dataset using RF
classifier.

Fig. 18. Ablation results of multiscale superpixel segmentation versus the
number of selected bands with (a) OA and (b) Kappa, and versus the number
of training samples with (c) OA and (d) Kappa on the KSC dataset using RF
classifier.

show that the fusion of the three segmentation methods is the
best choice, validating the rationality of the combination of
multiscale superpixel segmentation strategy.

F. Ablation Studies Toward the KL-�1 and �2,1

Superpixel-Level Distances

It is one of the main contributions of our proposed MSGCF
to utilize superpixel-level distances for band grouping and
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TABLE VI

CLASSIFICATION ACCURACY OF VARIOUS COMPARED METHODS ON FOUR HSI DATASETS (TEN SELECTED BANDS)

Fig. 19. Ablation results of multiscale superpixel segmentation versus the
number of selected bands with (a) OA and (b) Kappa, and versus the number
of training samples with (c) OA and (d) Kappa on the HU dataset using RF
classifier.

clustering. To demonstrate the necessity of grouping and
the effectiveness of superpixel-level distances, we also per-
formed ablation experiments on four different datasets. Specif-
ically, the first comparison method was used to verify the
significance of grouping, i.e., no grouping was performed,
the length of the group le was equal to B , and all bands
were clustered using the superpixel-level �2,1 distance. This
method was abbreviated as MSGCFNG. The second compar-
ison method used superpixel-level KL-�1 distance to group
bands and then performed intragroup clustering by the EFDPC
method. Likewise, this method was named MSGCFCE, which
aimed to investigate the effectiveness of superpixel-level dis-
tances for clustering. The last one was called as MSGCFGE,
which first adopted traditional Euclidean distance for grouping

Fig. 20. Ablation results of multiscale superpixel segmentation versus the
number of selected bands with (a) OA and (b) Kappa, and versus the number
of training samples with (c) OA and (d) Kappa on the SV dataset using RF
classifier.

and then performed intragroup clustering by superpixel-level
�2,1 distance. Evidently, MSGCFGE was used to reveal the
validity of the superpixel-level distance for band grouping.

Tables VII–X, respectively, show the classification results
of the RF classifier using different numbers of selected bands
on the IP, KSC, HU, and SV datasets. It can be observed
from the four tables that our proposed MSGCF maintains the
best performance on four different datasets. Especially, the
advantages of MSGCF are more obvious when the number
of chosen bands is small. Furthermore, the classification
accuracy of MSGCFNG is decreasing as the number of selected
bands increases, which may be due to the large amount of
redundant information contained in the additional bands. This
phenomenon can be mitigated by the MSGCF on KSC and
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TABLE VII

ABLATION RESULTS OF SUPERPIXEL-LEVEL BAND GROUPING
AND CLUSTERING ON THE IP DATASET WITH DIFFERENT

NUMBER OF SELECTED BANDS

TABLE VIII

ABLATION RESULTS OF SUPERPIXEL-LEVEL BAND GROUPING

AND CLUSTERING ON THE KSC DATASET WITH
DIFFERENT NUMBER OF SELECTED BANDS

TABLE IX

ABLATION RESULTS OF SUPERPIXEL-LEVEL BAND GROUPING

AND CLUSTERING ON THE HU DATASET WITH
DIFFERENT NUMBER OF SELECTED BANDS

HU datasets. And the classification accuracy of MSGCF is
much higher than that of MSGCFNG, indicating that band
grouping plays a vital role in the proposed framework. Besides,
the classification results of MSGCFCE are all lower than
those of MSGCFGE, which shows that superpixel-level �2,1

distance is more significant in clustering than superpixel-level
KL-�1 distance in band grouping. Furthermore, we can also see
that MSGCFCE is higher than MSGCFNG, validating the role of
superpixel-level KL-�1 distance in band grouping. In summary,
both the superpixel-level distance measures, including KL-�1

and �2,1, provide a positive effect on the hyperspectral BS.

G. Theoretical Analysis of Time and Space Complexity

Finally, the time complexity of our proposed MSGCF
method is theoretically analyzed, which can be roughly divided
into three parts, namely preprocessing part (including super-
pixel segmentation and superpixel-level distance computation),
group clustering part and voting part. Specifically, the time
complexity of the three superpixel segmentation methods
(ERS, SLIC, SNIC) is O(XY log(XY )), O(XY ) and O(XY ),

TABLE X

ABLATION RESULTS OF SUPERPIXEL-LEVEL BAND GROUPING
AND CLUSTERING ON THE SV DATASET WITH DIFFERENT

NUMBER OF SELECTED BANDS

TABLE XI

ADVANTAGES AND DISADVANTAGES OF MSGCF
FOR HSI BS

respectively. Because multiscale segmentation is performed,
the time complexity of superpixel segmentation process is
O(k XY log(XY )), O(k XY ) and O(k XY ), respectively. The
complexity of computing the superpixel-level distance is
O(Nk B2). Besides, the time complexity of group clustering is
O(k B2), while that of voting is O(1). It is worth noting that
although the time complexity of our method is higher, the pre-
processing step is totally unsupervised, which can be carried
out in advance. Moreover, all branches can be carried out in
parallel to further compress the time cost. Similarly, the space
complexity of MSGCF is correspondingly divided into three
parts, where that of three superpixel segmentation methods
(ERS, SLIC, SNIC) is O(XY ), and that of superpixel-level
distance computation is O(Nk B2). The space complexity of
group clustering is O(k B2) and the space complexity of voting
is O(k B). At last, the advantages and disadvantages of our
approach are summarized in Table XI.

V. CONCLUSION

In this article, a MSGCF is proposed for hyperspectral
BS, abbreviated as MSGCF. Motivated by the complementary
properties of three different superpixel segmentation methods
(ERS, SLIC and SNIC), a multiscale superpixel segmentation
fusion scheme is performed to accommodate characteristics
of various land cover types, and a series of multiscale super-
pixel maps is thus generated, which provides rich spatial
structural information for measuring the correlation of bands.
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Subsequently, the grouping and clustering paradigm is intro-
duced to conduct the contextual information among bands.
The maximum points of superpixel-level KL-�1 distance of
adjacent bands are adopted as partition points to separate bands
into groups, and the grouping procedure is carried out in an
adaptive way rather than presetting the number of groups
by hand, hence the generalization of the proposed method
can be ensured. We also proposed a SuFDPC to cluster the
bands within the group, which is applicable to the limited
band clustering situation. Finally, BS results are achieved with
a ranking-based voting strategy by concerning information
entropy and frequency of occurrence in a unified scheme. With
these steps, MSGCF is able to select the most informative
bands with strong discrimination.

A number of ablation analysis has been carried out on
four real-world HSI datasets to validate the necessity of mul-
tiscale superpixel segmentation fusion and the effectiveness
of the superpixel-level band grouping and clustering modules.
Meanwhile, the classification performance and band similarity
(which is one of the important metrics for measuring the rep-
resentativeness of the selected bands) of MSGCF is compared
with several state-of-the-art methods, i.e., AP, ID, K-centers,
MVPCA, FDPC, EFDPC, FNGBS, OCF, UBS, ASPS, ACNN,
BSNet, and DARecNet. The experimental results always
exhibit the superiority of the proposed MSGCF approach.
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