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Abstract— 3-D Gabor, as a typical filter, plays a critical role
in extracting discriminative spectral–spatial features from hyper-
spectral images (HSIs). However, the performance of traditional
3-D Gabor is limited by the uniform response to each direc-
tion, which is inconsistent with the complexity of land cover
distribution. It has been a continuing concern for researchers
to investigate the anisotropic 3-D Gabor filters. In addition, the
3-D Gabor wavelets do not make full use of spatial distribution
information, thus reducing the accuracy. This article proposes
a superpixel-guided variable 3-D Gabor phase coding fusion
(SuVGF) framework for HSI classification with limited training
samples. First, the variable 3-D Gabor filters are created based
on various asymmetric sinusoidal waves and spatial kernel sizes
to achieve multidirectional features. Second, the local Gabor
phase ternary pattern is adopted to encode the Gabor phases and
improve the feature discrimination. Meanwhile, a scale map is
produced by the majority voting of multiscale simple noniterative
clustering (SNIC) and entropy rate superpixel (ERS) segmenta-
tion, which contains sufficient and complementary spatial distri-
bution information. Then, geometric optimization is employed on
the scale map to reduce noise disturbances. Finally, all Gabor
features are modified by the filter with the guidance of a scale
map and fused together as a confidence cube, and the random
forest algorithm is exploited for classification. The SuVGF is
applied to three real hyperspectral datasets to demonstrate the
superiority of higher accuracy, stronger robustness, and less
computational complexity in comparison with several state-of-
the-art ones.

Index Terms— Feature extraction, hyperspectral image (HSI)
classification, superpixel segmentation, Variable Gabor (VG)
filter.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) acquire spatial infor-
mation and simultaneously collect tens or even hundreds

of narrowband continuous spectral information, which allows
the detection and analysis of the surface material [1], [2].
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The increment of spectral dimensionality makes HSI look
like a data cube, and each pixel of HSI is equipped with a
vector of hyperspectral profile. HSI classification is one of
the leading research fields, which has been broadly applied to
precision agriculture [3], environmental monitoring [4], ocean
exploration [5], and so on. The high spectral resolution of HSI
achieves better attribute description but raises many challenges
for accurate feature extraction: 1) the high dimensionality of
HSIs leads to the increased number of free parameters to be
estimated in the model, which can easily cause the overfitting
problems and reduce the generalization ability [6], [7] and
2) the high cost and time-consuming of manual labeling result
in the relatively small training sample set, and the Hughes
phenomenon is inevitable [5]. Therefore, it has become a
popular topic to effectively improve the HSI classification
performance with the small number of labeled samples.

Dimensionality reduction (DR) extracts more representa-
tive features and removes redundant information from the
HSI, including the methods of feature selection and feature
transformation. Feature selection directly selects the most dis-
tinguishable features from the original HSI to form a new low-
dimension feature space for classification [8], [9]. Differently,
feature transformation uses linear or nonlinear operations to
map the original spectral attributes from a high-dimension
space to a low-dimension subspace [10]. The principal com-
ponent analysis (PCA) [11] is a widely used feature trans-
formation method, and it is subsequently expanded to the
kernel principal component analysis (KPCA) [12]. Besides,
the 1-D convolutional neural network (1-D CNN) [13]–[15],
the generative adversarial network (GAN) [16], [17], and the
recurrent neural network (RNN) [18], [19] were designed as
spectral feature extractors to explore the correlation between
hyperspectral vectors. The DR based on spectral information
can effectively alleviate the Hughes phenomenon and achieve
better classification results. Nonetheless, the ignorance of spa-
tial information has led to unsatisfactory accuracy in regions
with complex spatial structures. In recent years, researchers
have been more and more interested in exploiting the spatial
semantic information of HSIs. The shape and size of various
components and objects provide additional spatial information
to enhance the feature ability and classification accuracy. Typi-
cal methods of spatial feature extraction include the gray-level
cooccurrence matrix (GLCM) [20], the wavelet transform [21],
the Gabor filter, the local binary descriptor [22], the mor-
phological operator [23], the Markov random field [24], [25],
and so on. CNN methods can learn spatial features through
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iterative convolution calculation of receptive fields to increase
the representation capabilities [26]. For HSIs with high spatial
resolution, the reduced interclass separability and increased
inner class variance would lead to more misclassification
of land covers, and thus, spatial features are important for
accurate recognition.

Subsequently, the joint spectral–spatial feature extraction
has been powerful means for HSI classification and attracted
more attention [23]. There exist methods of separate process-
ing and simultaneous processing to combine the spatial and
spectral information in different ways. The separate processing
methods achieve spectral and spatial features independently
and use the spatial component to guide spectral features to
obtain classification results. There are some typical models
such as sparse representation [27], [28], low-rank represen-
tation [29], [30], extended morphological attribute profile
(EMAP) [31], [32], and local binary pattern (LBP) [22],
[33]. Direct stacking of spectral and spatial features will
yield higher dimensionality and increase the redundancy and
complexity, whereas separate spectral–spatial feature extrac-
tion alleviates this issue. Two-branch CNN architecture was
developed to extract spectral and spatial characteristics, respec-
tively, to obtain deep and comprehensive expression [34], [35].
In addition, superpixels are employed to correct the classifica-
tion of spectral attributes with the neighborhood information,
via spatial preprocessing or postprocessing operation [30],
[36], [37]. However, separate processing methods cannot uti-
lize the characteristics of 3-D HSI cube sufficiently, lacking
the integrated extraction of intrinsic spectral–spatial features.
On the contrary, simultaneous processing methods view HSI
as a 3-D structure and process spectral–spatial features using
3-D descriptors to make better identification. A series of algo-
rithms have been extended to three dimensions to obtain better
feature representation, such as 3-D GLCM [38], 3-D discrete
wavelet transform (3-D DWT) [39], 3-D dense LBP [40],
3-D CNN [13], 3-D GAN [41], and multiple kernel learning
(MKL) [42], [43]. MKL methods enhanced flexibility and
achieved superior performance over single-kernel methods
since multiscale kernels can fuse comprehensive information
of single kernels at different scales. Likewise, 3-D Gabor filters
have been successfully applied in many HSI classification
tasks [30], [44]. Shen and Jia [45] adopted 3-D Gabor with
thirteen directions in four scales to obtain the magnitude
features for classification and demonstrated its superiority of
capturing distinguishable spectral–spatial details.

3-D Gabor plays a critical role in extracting the discrimi-
native spectral–spatial features from HSIs. However, the per-
formance of traditional 3-D Gabor is limited by the uniform
response to each direction, which is inconsistent with the
complexity of land cover distribution. That is to say, most 3-D
Gabor filters are isotropic representations, whereas anisotropic
filters match the spatial distribution better. It has been a contin-
uing concern for researchers to investigate the anisotropic 3-D
Gabor filters [46], [47]. Moreover, it is hard to select a suitable
spatial kernel for different HSIs, and it cannot efficiently
acquire multiscale details with a single kernel. Furthermore,
directly convolving the original HSI of multiple directions
and scales inevitably leads to high feature dimensionality, and
some feature selection methods were proposed to address the

redundancy [48], [49]. Traditionally, the Gabor phase has often
been ignored as it is more sensitive to positional changes,
whereas binary quadrant coding makes phase features usable.
It codes Gabor phase features effectively to determine the
sample similarity and achieves favorable classification results,
which is jointed with the Hamming distance [50], [51]. On the
other hand, the Gabor filter can extract texture information but
fails to achieve satisfactory smoothness on class boundaries.
In comparison, superpixels offer a good representation of
local regions and maintain object boundaries, which is fast
becoming a key instrument in regularizing preclassified results.
However, different superpixel algorithms use distinct segmen-
tation criteria and obtain various visual contents, and iterative
attempts are required to determine the optimal superpixel size
for each HSI. Therefore, it is necessary to explore the diverse
feature extraction and superpixel segmentation to capture more
visual information and improve the classification performance
of 3-D Gabor filters.

In this article, a superpixel-guided variable 3-D Gabor phase
coding fusion (SuVGF) framework is proposed to achieve
higher classification accuracy with limited training samples,
as shown in Fig. 1. First, we introduce two parameters to
control the type of plane sinusoidal waves for each group of
3-D Gabor filters, capturing the local characteristics of sophis-
ticated interband correlations. For each group of Gabor filters,
only the filters parallel to the spectral axis are used to enhance
the discriminability and reduce redundancy. Then, local Gabor
ternary patterns (LGTPs) are applied in the variable 3-D Gabor
phase features to describe the variation between the center
pixel and its neighbors (called V-Gabor features). Furthermore,
V-Gabor features are classified via the random forest (RF)
classifier to produce a confidence cube. Meanwhile, two super-
pixel segmentation algorithms are applied to HSI, including
simple noniterative clustering (SNIC) and entropy rate super-
pixel (ERS) algorithms at multiple scales. During multiscale
superpixel segmentation, the minimum distance is calculated
from each pixel to the points of boundaries. The final scale
map is generated by the majority voting of all multiscale
distance maps, which conducts the selection of convolution
kernel size. Subsequently, the confidence cube is convolved
with the Gaussian filter via the guidance of the scale map,
and the Su-Variable Gabor (VG) cube is obtained. The scale
map is beneficial to maintain the edges and ensure the spatial
structure. Finally, the comprehensive classification results are
achieved by linear summation of all Su-VG cubes to improve
the classification performance and identification accuracy.

Compared with other related methods and the previous
works of [40], [52], which focus on 3-D LBPs and multiple
magnitude features of 3-D Gabor, respectively, our approach
presents three main innovations, which are given as follows.

1) With respect to the anisotropic and nonlinear character-
istics of HSI, we create a new format of the sine wave
to control the grating of directed sinusoids and obtain
a more robust representation. Besides, we adopt the
Gabor filters of multiple kernels to track local response
regions, which can effectively catch the changes in
distribution patterns. The improved representation of fre-
quency and direction and the strategy of multiple kernels
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are conductive to comprehensive feature extraction and
meaningful model construction.

2) The Gabor phase is a significant representation of texture
information, but matching directly with phase angles
will undoubtedly decrease the computational efficiency.
We first integrate the local ternary pattern (LTP) with
the Gabor phase to obtain features that are more robust
to noise interference for HSI classification. The LTP dis-
tinguishes positive response mode and negative response
mode, which can retain as much information as possi-
ble during feature extraction and preserve the feature
distinguishability.

3) Two types of multiscale superpixel algorithms are
designed to acquire spatial information to characterize
the homogeneity degree of local regions, and a scale map
is generated via majority voting. The consideration of
multiscale spatial characteristics is complementary with
the VG phase coding. The scale map is employed to
select the convolution kernel size of the variable filter,
reduce interference from noise, and further improve
classification performance.

The rest of this article is organized as follows. Section II
briefly introduces some basic notations of related works.
Section III presents the steps of proposed SuVGF, respectively,
in detail. Section IV shows the information of three real HSI
datasets and describes the experimental setup. The experimen-
tal results are described in Section V. Finally, the conclusions
are given in Section VI.

II. RELATED WORKS

In this section, we briefly introduce some basic notions of
the 3-D Gabor filter and superpixel segmentation.

A. 3-D Gabor Wavelet

Over the last decades, the Gabor filter has long been a
powerful texture information extractor in a wide range of
fields, such as texture analysis [53], face recognition [54], and
HSI classification [49]. Gabor wavelet can enhance the rep-
resentation of visual properties due to its biological relevance
to human vision. Traditional Gabor wavelet is composed of
a plane sinusoid and a convolution kernel, constrained by the
Gaussian envelope function [55]. The 3-D Gabor wavelet is
defined in a general form as

Φ(x, y, b) = u(x, y, b) × v(x, y, b) (1)

where (x, y) is the spatial coordinate and b is the spectral band
for a point (x, y, b). u(x, y, b) is the plane sinusoidal wave,
and v(x, y, b) is the Gaussian envelop function. u(x, y, b) and
v(x, y, b) are defined as follows:

u(x, y, b) = exp
(
j2π

(
Fxx + Fy y + Fbb

))
(2)

v(x, y, b) = 1

(2π)3/2σ 3
exp

(
− x2 + y2 + b2

2σ 2

)
(3)

where σ is the standard deviation of the Gaussian func-
tion, and it controls the shape of the Gaussian envelope.

(Fx , Fy, Fb) describes the multiple frequencies of sinusoidal
function, respectively. These parameters are computed as

Fx = f cos ϕ sin θ

Fy = f sin ϕ sin θ

Fb = f cos ϕ (4)

where (Fx , Fy, Fb) are usually determined by three parame-
ters: f is the center frequency of sinusoidal wave; θ and ϕ are
the angles of wave vector in 3-D frequency domain, which are
shown in Fig. 2. θ and ϕ range from 0 to π , and the directions
of θ and ϕ are changed by 45◦ each time. More precisely, f,
θ , and ϕ are specifically defined as

f ∈
[

1

2
,

1

4
,

1

8
,

1

16

]
(θ, ϕ) ∈

[
0,

π

4
,
π

2
,

3π

4

]
. (5)

Thus, there are totally 52 Gabor filters (when ϕ = 0, the
corresponding filter is one wavelet, not four wavelets) in four
frequencies. Generally, Gaussian envelopes and sinusoids tend
to be the same although they can have different orientations.

B. Superpixel Segmentation

Superpixel segmentation clusters neighboring pixels with
similar texture, color, luminance, and other attributes in HSI
to form regions with adjacent pixels. Ren and Malik [56] first
proposed that the superpixel segmentation of spatial informa-
tion produces local regions with specific semantic content,
which significantly reduces the dimensionality redundancy and
algorithm complexity. The superpixel segmentation algorithms
are usually classified into graph-theoretic and gradient-based
approaches. The corresponding classical and representative
algorithms are ERS [57] and SNIC [58], respectively, and their
descriptions are given in the following.

ERS divides the HSI into N nonoverlapping uniform
regions, where N denotes the number of superpixels and can
be calculated heuristically as [36]

N =
⌊

X × Y

100 × τ
√

Res

⌋
(6)

where �·� represents the rounding down operation. Res is the
spatial resolution of HSI, determined by the imagery sensor.
In particular, the value of τ should be less than 1. R ∈ R

X×Y×B

represents the raw HSI, X ×Y corresponds to the spatial size,
and B is the number of bands.

The HSI can be represented as a nondirectional graph
U = (V, E), where V and E denote the set of vertices and
edges in U, respectively. ERS aims to find a suitable subset
A ⊆ E to divide U into N subgraphs, and each subgraph
corresponds to a superpixel. The entropy rate of random walk
on a subgraph ŨA = (V, A) is defined as H(A), which is the
quantification of random process uncertainty and can be used
to determine the compactness and uniformity. A balance term
function B(A) is constructed to constrain the subgraphs and
make superpixels more compact and homogeneous. Finally,

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 11,2022 at 08:06:44 UTC from IEEE Xplore.  Restrictions apply. 



5523816 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 1. Proposed SuVGF procedure for HSI classification.

Fig. 2. 3-D frequency domain.

N connected subgraphs are obtained by optimizing the objec-
tive function, which is defined as follows:

Fers = max
A

H(A) + ωB(A) s.t. A ⊆ E (7)

where ω represents the weight with a value greater than zero,
and the appropriate selection of ω value has an essential effect
on the generation of superpixels. The segmentation process
is completed by maximizing the object Fers, and the ERS
algorithm produces relatively satisfactory superpixels through
the collaborative work of H(A) and B(A).

SNIC is an improved version of simple linear iterative
(SLIC), and it has the advantages of low computational com-
plexity and good segmentation results. The distance from
a pixel (x1, y1) to another pixel (x2, y2) in HSI from the
CIELAB color domain Υ and spatial domain χ is computed
as

Fsnic =
√∥∥χ (x1,y1) − χ (x2,y2)

∥∥2

ξ1
+

∥∥Υ (x1,y1) − Υ (x2,y2)

∥∥2

ξ2
(8)

where ξ1 is derived from ((X × Y )/N )1/2, and X × Y is the
total number of HSI pixels. ξ2 is the expected compactness
parameter, which describes the weight of spatial coordinates.
Specifically, SNIC divides the HSI into N square regions and
then calculates the geometric center of each area as the initial
center. A priority queue is built to record the distance from
nodes to centers. Equation (8) is used to obtain the element

with shortest distance in priority queue, and its eight neigh-
boring pixels are calculated and added to the priority queue.
Meanwhile, the corresponding center coordinates evolve until
the queue is empty.

III. SUPERPIXEL-GUIDED VARIABLE GABOR

FUSION FRAMEWORK

This section introduces the proposed method SuVGF for
HSI classification in detail, and the schematic of SuVGF is
illustrated in Fig. 1. First, the variable 3-D Gabor feature
extraction is applied to the raw HSI to obtain Gabor features
Gk of multiple kernels, with response intensity parameters 
.
Second, the LTP is designed to encode the phase features of
Gk to produce local Gabor phase ternary pattern features Q̂k ,
which are then classified via RF to obtain initial confidence
cubes Fk . Meanwhile, we make DR via PCA on the raw HSI
to get DR HSI. Then, the scale map M is constructed from
various multiscale superpixel maps Wi ′

and distance maps
D̂i ′

through the edge distance calculation and majority voting.
The scale map guides the Gaussian smoothing on Fk to get
regularized feature cubes Hk , which are then classified via
RF to obtain regularized confidence cubes Zk . Finally, the
strategy of multiple kernel fusion is utilized to generate the
classification results.

A. Variable 3-D Gabor Feature Extraction

In HSI processing and analysis, the Gabor wavelet is a
classical method with a fantastic performance for texture
extraction. Commonly, most methods directly use 52 3-D
Gabor filters of different frequencies and orientations to obtain
an effective representation. However, this would cause mas-
sive redundancy of data and exacerbate the Hughes phe-
nomenon. Jia et al. [50] found that the 3-D Gabor filters
oriented parallel to the spectral axis are more representa-
tive than the others, so all the 3-D Gabor filters that we
applied are parallel to the spectral axis. The specific para-
meters of the four obtained 3-D Gabor filters are listed as
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f ∈ [1/2, 1/4, 1/8, 1/16], (θ, ϕ) ∈ [0]. Collectively, we make
enhancements to traditional 3-D Gabor filters in terms of the
response intensity parameters of sine waves and the convolu-
tion kernel size to create variable 3-D Gabor filters.

On the one hand, we create a more general format for the
response intensity of sinusoids. The sinusoids of the traditional
3-D Gabor filter are defined as (2), showing a uniform response
in all directions. However, there are complicated spatial dis-
tribution and diverse spectral attributes within HSI, which
are hard to represent using the uniform response [52], [59].
In contrast, anisotropic Gabor wavelets fit the internal structure
of HSI better with a diverse representation of information. For
this reason, we create a new format of sine wave uλ(x, y, b)
to explore the different structural components of HSI, which
is denoted as follows:

uλ(x, y, b) = exp
(

j2π
(
Fxxλ1 + Fy yλ1 + Fbbλ2

) 1
λ3

)
(9)

where (x, y, b) represents a point situated at the spatial coor-
dinate (x, y) and the bth band in HSI. Here, uλ represents
the isotropic sine wave when λ = (1, 1, 1) and represents
the anisotropic sine wave when λ equals to other values. The
parameter λ = (λ1, λ2, λ3) is a set of response intensity para-
meters, controlling the grating degree of oriented sinusoids.
Within this, λ1, λ2, and λ3 describe the response intensities
in the spatial domain, the spectral domain, and the overall
structure, respectively. Their relationship is defined as

λ3 = 2λ1 + λ2

3
(10)

where the value of λ3 is rounded to the nearest integer. Varying
the response intensity parameters creates the variable 3-D
Gabor filters with different properties and extracts a more
diverse collection of spectral–spatial information.

Admittedly, there are many possible values of λ, and
the integrated consideration of isotropic and anisotropic sine
waves is beneficial to extract more discriminative features.
Nonetheless, too much choices of λ setting would lead to
the problems of high feature redundancy and low calcula-
tion efficiency, reducing the classification performance. Here,
we design and retain five specific choices to balance the feature
representation and model complexity, which are shown as


 = [(1, 1, 1), (1, 2, 1), (1, 3, 2), (2, 1, 2), (2, 2, 2)] (11)

where 
 is the entire collection of λ. It is worth mentioning
that λ = (1, 1, 1) describes the intensity parameter of tradi-
tional 3-D Gabor filter, and the others represent the parameters
of anisotropic 3-D Gabor filters. A series of 3-D Gabor filters
with different response intensity parameters can be expressed
as

�λ(x, y, b) = uλ(x, y, b) × v(x, y, b) (12)

where �λ captures the uneven 3-D spectral–spatial information
and ensures the integrity of representation. uλ denotes the
isotropic or anisotropic sine wave, and v denotes the Gaussian
envelope function. Subsequently, five types of Gabor filters
are stacked along the direction of spectral axis. Such a new
module of multiple response intensity parameters reduces the
data redundancy and model complexity.

On the other hand, the Gaussian function of the Gabor
filter tends to use a fixed kernel parameter, which would
lead to the underlearning when the spatial distribution is not
identical. Moreover, the parameter mostly needs to be chosen
artificially through extensive experiments, not only reducing
the generality but also increasing the workload. In this case,
we introduce a learning strategy of multiple kernels to solve
this problem and enhance feature extraction. Gabor wavelets
with multiple kernels can fully incorporate the various hetero-
geneous elements to efficiently represent the structure of HSI.
Considering the traditional perspective that the center pixel is
most correlated with its neighborhood in a 3 × 3 region, the
lower threshold of kernel size is set to three. For HSI with high
spatial resolution, there are obvious detailed information and
large intraclass differences, and it is suitable to use a smaller
window for the Gabor feature extractor to avoid introducing
interference. Alternatively, for HSI with low spatial resolution,
there are more smooth details, and it is desirable to employ a
larger window to improve the accuracy of feature extraction.
Moreover, HSI data with more categories contain more con-
textual information, and a larger window is required to capture
the spatial relationships. Therefore, the upper threshold J of
kernel size is defined as

J =
⎧⎨⎩

T − 3

2
+

⌊
C ×

(√
Res

)⌋
, if J ≤ T

T, otherwise
(13)

where C and Res denote the number of land cover classes
and spatial resolution (i.e., meters per pixel), respectively. T
is a user-defined parameter that controls the upper threshold.
The maximum value of J is set to T because the spatial
regions contain different materials and noise when the scale
continuously expands. At the same time, the minimum value of
J is set as ((T − 3)/2) to avoid a small upper threshold and,
thus, limit Gabor feature extraction. We select K groups of
kernel size parameters for variable 3-D Gabor filters, whose
values range from three to J . The maximum and minimum
settings of J make K change within a proper range related to
HSI. The features generated with different types of sinusoidal
plane wave for each group are stacked along the spectral
dimension �k = {�k

1, . . . ,�
k
5}, k = 1, . . . , K .

Naturally, the characteristics obtained via variable 3-D
Gabor filters can be defined as

Gk = �k ⊗ R, k = 1, . . . , K (14)

where ⊗ is the convolution operation and R is the HSI data
cube. In summary, the obtained variable 3-D Gabor features
for each group are defined as Gk, where k = 1, . . . , K .

B. Local Gabor Phase Ternary Pattern Feature Coding

The traditional 3-D Gabor wavelet is extended to obtain
abundant Gabor features by optimizing the response intensity
parameters and spatial kernel dimensions. The coefficient of
a point (x, y, b) is a complex number, which is obtained by
Gabor wavelet �k , including the magnitude and phase of
convolutional results. Among them, the phases catch variation
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Fig. 3. Calculation of LTP operators.

in the surface texture, which are computed as

Pk(x, y, b) = arctan
Im

(
Gk(x, y, b)

)
Re

(
Gk(x, y, b)

) (15)

where Re means the real part and Im represents the imaginary
of complex coefficient [60]. The real and imaginary parts are
combined to produce a coordinate axis, as shown in Fig. 3.

It has been revealed that phase characterization can improve
the feature stability and discrimination via appropriate encod-
ing methods [61]. Compared with LBP, LTP retains the thresh-
olds and expands the codes into −1, 0, and 1 instead of
0 and 1, which makes it more hierarchical than the binary
basis. Specifically, LBP treats the positive response and neg-
ative response as the same, but the positive and negative
edge responses have obvious visual differences. Thus, LBP
is sensitive to the nonuniform illumination and random noise,
which are poorly discriminated. In contrast, LTP distinguishes
the positive response and the negative response, and will
not mistake different modes with huge differences, retaining
as much information as possible during feature extraction.
Therefore, we adopt local Gabor phase ternary pattern to
encode the phases to produce more robust features. The LTP
takes a pixel (x, y, b) as the center and makes the comparison
between other pixel values P̂k(x, y, b) and center pixel value
Pk(x, y, b) in a 3 × 3 region. The feature coding is assigned
to 1, −1, and 0 if the absolute value of comparison result
is greater than threshold ρ, less than −ρ, and otherwise,
respectively, which is expressed as

Qk(x, y, b) =

⎧⎪⎨⎪⎩
1, P̂k(x, y, b) ≥ Pk(x, y, b) + ρ

0, |P̂k(x, y, b) − Pk(x, y, b)| < ρ

−1, P̂k(x, y, b) ≤ Pk(x, y, b) − ρ.

(16)

For complexity reduction, the coding of LTP is split into
an upper layer and a lower layer. The upper part replaces all
−1 s with 0 s and leaves the rest as it is. It assigns different
weights to the comparison results at different positions, thus
obtaining a weighted sum for each position. The process can
be described as

upk(x, y, b) =
{

0, if Qk
(x,y,b) = −1

Qk
(x,y,b), otherwise

(17)

LTPk
up(x, y, b) =

7∑
n=0

2nupk(x, y, b). (18)

The lower part replaces all −1 s with 1 s, replaces 1 s with 0 s,
and leaves the rest as it is, respectively. Then, the weighted

sum of comparison results is obtained, which can be described
as

lowk(x, y, b) =
{

1, if Qk
(x,y,b) = −1

0, otherwise
(19)

LTPk
low(x, y, b) =

7∑
n=0

2n lowk(x, y, b). (20)

The eigenvalues are concatenated as the local Gabor phase
features Q̂k = {LTPk

up, LTPk
low}, which then are classified by

the RF algorithm to obtain an initial confidence cube Fk .

C. Multiscale Superpixel Segmentation

The variable 3-D Gabor wavelets exploit the nonlinear
statistical properties in HSI from the perspective of spec-
tral information and feature space. However, it ignores the
spatial adjacency between pixels. Fortunately, superpixel seg-
mentation is able to reflect the spatial distribution of local
regions, via distance calculation and similarity compari-
son [62]. Recently, superpixels, which are homogeneous and
uniform patches in images, have been increasingly applied in
HSI classification. Hence, the spatial information of superpix-
els can be used to regularize and optimize the preclassification
results of pixels. In this regard, there is a requirement for the
richness of spatial information, and we use various multiscale
superpixel maps to generate a scale map to measure spatial
similarity comprehensively and adaptively.

Considering the variation of object shapes and distribution
patterns, we use superpixel maps at various scales to extract
the spatial information in HSI. The number of superpixels in
the i th scale Ni is computed as follows:

Ni = X × Y

Si
, i = 2, 3, . . . , I (21)

where Si denotes the estimated number of pixels in superpixel,
which is calculated by the designed heuristic formula

Si =
⌊

10 × i

Lg(Res + 1)

⌋
(22)

where Lg(·) means the logarithm based on 10, and Res is
the HSI spatial resolution (i.e., meters per pixel). For the i th
scale, Ni is one of the input key parameters to ERS and SNIC
algorithms.

We can obtain I − 1 different superpixel maps W =
{W2, . . . , WI } for each superpixel segmentation algorithm
through the variation of scale parameter i . We use multi-
scale ERS algorithm to create superpixel segmentation maps
WERS = {W2

ERS, . . . , WI
ERS} and exploit multiscale SNIC

algorithm to obtain superpixel segmentation maps WSNIC =
{W2

SNIC, . . . , WI
SNIC} to take the complementary advantages of

different segmentation and multiple scales. WERS and WSNIC

are combined together to get the total set of superpixel maps,
and the i ′th map is expressed as Wi ′

, i ′ ∈ 1, . . . , 2(I − 1).
At the next step, we introduce a geometric model into

the various multiscale superpixel segmentations to enhance
the feature expression under spatial constraints. The spatial
similarity of pixels is converted into the calculation of distance
scale, and the spatial distribution of pixels is determined by
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the minimum distance from pixels to points on superpixel
edges. Specifically, for the pixels close to superpixel edges, the
surrounding context is more complex, and the category distinc-
tion is not particularly obvious, so the contextual information
in the smaller neighborhood with shorter distances should be
considered. Hence, we choose the minimum value to generate
the initial scale map D̂i ′

(x, y), which is expressed as

D̂i ′
(x, y) = min

(x′ ,y′)∈ζ

{√
(x − x ′)2 + (y − y ′)2

}
(x, y) ∈ �, i ′ ∈ 1, . . . , 2(I − 1) (23)

where � represents the set of pixel spatial coordinates and
(x ′, y ′) represents any point on superpixel edges. i ′ ranges
from 1 to the total number of multiscale ERS and SNIC
superpixel maps.

Directly utilizing D̂i ′
(x, y) as the convolution kernel radius

size of variable filter is highly risky to oversize and interfere
with other features. Geometrically, the new radius size is con-
sidered as one-half size of the square window diagonal based
on original minimum distance to avoid confusing interference.
Therefore, the geometric optimization process converts the
distance map into a scale map, which is represented as

Di ′
(x, y) = 2 ×

⌊
D̂i ′

(x, y)√
2

⌋
+ 1, (x, y) ∈ 
. (24)

In the scale map, Di ′
(x, y) is adopted as the convolution kernel

diameter size of variable filter. Threshold is set to T to avoid
the filter becoming too large and bringing in sample points of
other categories. The threshold processing is expressed as

Di ′
(x, y) =

{
Di ′

(x, y), Di ′
(x, y) ≤ T

T, Di ′
(x, y) > T

(25)

where T is a user-defined parameter controlling the upper
range of kernel size, which is the same parameter in (13).
The value of Di ′

(x, y) represents the convolution kernel size
generated from superpixel map Wi ′

, and it is odd value
between one and T . Finally, the integrated scale map M is
further generated by the majority voting of various multiscale
superpixel maps, which can be shown as

M(x, y) = MV
{

D1, . . . , D2(I−1)
}
(x, y) (26)

where MV is the majority voting operator. MV can perfectly
combine the global and local spatial information of HSI,
providing a more representative scale map M. The fusion
of various multiscale superpixel maps obtains different visual
content and further improves the performance.

D. Multiple Kernel Fusion

Since the distribution of various land covers is unknown in
advance, the windows in changeable size may mix with anom-
alous data in practical situations. Fortunately, the integrated
scale map M controls the selection of convolution kernel size
and produces the optimized neighborhood window centered
on each pixel. Thus, an adaptive filter is created, and the

Algorithm 1 SuVGF for HSI Classification

1: INPUT: raw HSI R ∈ R
X×Y×B with C classes;

2: OUTPUT: The predicted classification map of all pixels
Class ∈ R

X×Y ;
3: Begin
4: adopt PCA to R to create R′;
5: utilize multiscale ERS and SNIC on R′ to obtain the

superpixel maps Wi ′
;

6: use (24), (25), and (26) to generate the scale map M;
7: for k = 1 to K do
8: for j = 1 to 5 do
9: for i = 1 to 4 do

10: use (11) and (13) for (12) to create the variable 3-D
Gabor features Gk

i, j ;
11: end for
12: end for
13: use (15) and (16) to encode the variable 3-D Gabor

features Gk and obtain the 3-D Gabor phase features Qk ;
14: use (17)−(20) to obtain the upper and lower layer LTP

features, and combine them to get the total features Q̂k ;
15: obtain the confidence cube FK via RF classifier applied

to the total LTP features Q̂k ;
16: use (27) to obtain the regularized feature cubes HK ,

and then get the regularized confidence cubes Zk via RF
classifier;

17: end for
18: use (28) to obtain the predicted classification map Class;
19: End

regularized feature Hk is defined as

Hk(x, y) =
∑rx y

y′=−rx y

∑rx y

x′=−rx y
v̂
(
x ′, y ′)Fk

(
x + x ′, y + y ′)∑rx y

y′=−rx y

∑rx y

x′=−rx y
v̂(x ′, y ′)

v̂
(
x ′, y ′) = 1

2πσ 2
e− x ′2+y′2

2σ2 (27)

where v̂(x, y) is the 2-D Gaussian function and rxy equals to
((M(x, y) − 1)/2) that is the convolution kernel radius size at
(x, y) in M. Fk is the initial confidence cube obtained in Gabor
phase feature coding, and Hk(x, y) is the regularized feature
cube obtained after Gaussian smoothing. After the regularizing
step, the consistency of data distribution can be well preserved.

With the diversity and complexity constraints of actual HSI
data, it is difficult for a single kernel function to perfectly
solve the classification problems for different datasets. There-
fore, the effective representation of heterogeneous features is
designed to combine the multiple kernel features and exploit
the discriminative structural information of samples. This arti-
cle proposes a strategy of MKL to fully utilize the intrinsic
features embedded in K sets of features Hk . Then, Hk is
adopted to the RF classifier to produce the confidence cube
Zk ∈ R

X×Y×C . Zk
c(x, y) represents the probability of pixel

(x, y) in the kth group belonging to the class c. We determine
the label of each pixel through the probabilistic prediction of
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Fig. 4. Ground-truth map of Indiana HSI (16 land cover classes).

TABLE I

LAND COVER CLASSES WITH THE NUMBER OF SAMPLES FOR INDIANA

features, expressed as

Class(x, y) = arg max
c=1,...,C

K∑
k=1

Zk
c(x, y). (28)

The generalization ability and robustness of the SuVGF
method are enhanced, and the classification performance
is improved with comprehensive spectral–spatial feature
extraction.

IV. EXPERIMENTAL SETUP

In this section, first, three real HSI datasets imaged in
various places are introduced to demonstrate the superiority of
the SuVGF method. Second, the contribution of variable 3-D
Gabor wavelets is performed on the classification. Moreover,
the analysis of kernel parameter K and threshold parameter T
is achieved. Finally, ablation experiments are accomplished to
validate the effectiveness of modules in SuVGF.

A. Hyperspectral Dataset Description

1) Indiana Pines Dataset: The first dataset used for testing
is Indiana Pines HSI, which was collected by the Airborne Vis-
ible Infrared Imaging Spectrometer (AVIRIS) sensor in North-
west Indiana, USA. The wavelength ranges from 0.4 to 2.6
μm, covering 224 spectral bands. Moreover, only 185 bands
are retained after removing the zero bands and noise bands.
The image provides a spatial resolution of 20 m per pixel,
containing 145 × 145 pixels. All the 10 249 labeled samples
are classified into 16 classes, and the specific distribution of

Fig. 5. Ground-truth map of Salinas HSI (16 land cover classes).

TABLE II

LAND COVER CLASSES WITH THE NUMBER OF SAMPLES FOR SALINAS

labeled samples is shown in Fig. 4. Table I gives a description
of the numbers of labeled samples corresponding to different
classes.

2) Salinas Dataset: The second real-world dataset is Salinas
HSI, which is captured by the AVIRIS sensor over the Salinas
Valley, California, USA. The image consists of 224 bands
by 512 × 217 pixels with the spatial resolution of 3.7 m per
pixel, and 204 bands are retained after removing noise bands.
The dataset contains a total of 54 129 labeled samples, which
can be classified into 16 classes. The distribution of different
land cover classes is displayed in Fig. 5, and the numerical
information for corresponding categories is shown in Table II.

3) Trento Dataset: The third dataset is Trento HSI, gathered
in Trento, Italy. The image is filled with 166 × 600 pixels,
which achieves a high spatial resolution of 1 m per pixel.
There are 30 414 labeled samples that can be divided into six
different classes, which occupies 30% of the total samples.
In addition, the spectral dimension is 63 bands ranging from
0.4 to 0.98 μm. The detailed distribution and numerical infor-
mation are presented in Fig. 6 and Table III, respectively.

B. Ablation Experiment

There are several standard indicators to quantify the per-
formance of HSI classification, including overall accuracy
(OA), class accuracy (CA), and kappa coefficient (κ) [63].
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Fig. 6. Ground-truth map of Trento HSI (six land cover classes).

TABLE III

LAND COVER CLASSES WITH THE NUMBER OF SAMPLES FOR TRENTO

Fig. 7. Indiana dataset: (a) OA and (b) κ of five kinds of sine waves and
VG wavelets, respectively.

Fig. 8. Salinas dataset: (a) OA and (b) κ of five kinds of sine waves and
VG wavelets, respectively.

Concretely, the obtained features are more identifiable when
the values of the three indicators are higher. All experimental
results in terms of OA, CA, and κ are the average of training
for ten times to avoid the contingency. As mentioned above,
we focus on solving the problems of a small sample set so that
three to 15 samples per class are randomly selected to form
the training set, and the rest samples are used as the testing
set for each experiment.

1) Integration Necessity of Five Sine Waves: We design five
kinds of sine waves for 3-D Gabor wavelets to explore the
effect of various Gabor filter structures, and the comparison
results are shown in Figs. 7–9, respectively. As we can see,
different types of sinusoidal waves contribute unequally to the
classification among three datasets, and the accuracy raises
generally as the number of labeled samples increases. Con-
cretely, the sinusoids with parameters (1, 3, 2) make the most
considerable contribution to the Indiana HSI classification, but

Fig. 9. Trento dataset: (a) OA and (b) κ of five kinds of sine waves and VG
wavelets, respectively.

Fig. 10. OA versus the threshold parameter T for Gabor kernel size on
(a) Indiana, (b) Salinas, and (c) Trento using different numbers of training
samples per class.

it contributes relatively little to the Salinas dataset. Generally,
the sinusoids with parameters (1, 3, 2) and (2, 2, 2) obtain
a little better performance than the other single sine waves.
Furthermore, the total integration of five sine waves achieves
the best accuracy and consistency for classification due to the
comprehensive description and flexible utilization. Consider-
ing different types of sine waves show distinct performance on
each dataset, it is necessary to take the five kinds of sinusoids
into a unified model to improve the generalization and stability.

2) Analysis for Threshold Parameter T : The Gabor filters
use different sizes of convolution kernels to enhance the
acquired feature distinguishability. Fig. 10 shows the classifi-
cation results achieved by selecting the convolution kernels in
various sizes for each HSI dataset, using different numbers of
training samples, respectively. It can be seen that the optimal
convolution kernel size of a single Gabor is not the maximum
value, and the trend of OA versus the kernel size is not the
same on the three datasets. Specifically, the OA gradually rises
with the increasing kernel size of the Gabor filter on Indiana,
and it rises in fluctuation with the increasing kernel size
on Salinas. In contrast, the OA ascents rapidly and descents
slightly during the smaller kernel sizes on Trento. Although
the optimal kernel parameter with the best performance is
different for multiple sample sizes on three HSIs, the accuracy
similarly tends to be stable when the kernel size is larger
than the medium to high value. Therefore, comprehensively
considering the overall performance, computational efficiency,
and model applicability, the threshold parameter T is set to
53 to maintain stable accuracy and appropriate complexity.
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Fig. 11. OA versus the kernel parameter K for variable 3-D Gabor filers
and the initial scale I for superpixel maps on Indiana using (a) three, (d) five,
(g) ten, and (j) 15 training samples per class, on Salinas using (b) three,
(e) five, (h) ten, and (k) 15 training samples per class, and on Trento using
(c) three, (f) five, (i) ten, and (l) 15 training samples per class.

3) Analysis for Kernel Parameter K and Scale Parameter I :
The fused features of five kinds of sinusoids retain the detailed
content of multiscale kernel Gabors, and we choose K groups
of variable 3-D Gabor wavelets for feature extraction, where K
controls the selection of kernel parameters. On the one hand,
selecting too many groups would result in massive redundancy,
increasing the computational complexity and reducing the
classification accuracy. On the other hand, selecting too few
groups cannot complement each other effectively through the
MKL. Thus, the selection of kernel parameter K directly
influences the final classification results.

Besides, there is an assumption that adjacent pixels belong
to the same class rather than separate ones. Thus, the spatial fil-
ter achieves per-pixel likelihoods based on neighborhood, and
the Gaussian smoothing is applied to reduce local variations.
The traditional Gaussian filters use the fixed convolution kernel
size, which does not adequately guarantee the homogeneity of
pixels in the neighborhood. Meanwhile, multiscale superpixel
segmentation methods are excellent at extracting the abundant
spatial structure features, and the initial scale I affects the
number and quality of superpixels. The superpixel-based scale
map guides the kernel selection for Gaussian filters to mini-
mize the local fluctuations of per-pixel likelihoods. Therefore,
the selection of the initial scale I measures the homogeneity
of regions and influences the effect of Gaussian filters.

As shown in Fig. 11, we analyze the kernel parameter K
and scale parameter I on classification results using different
numbers of training samples, and the value range of K and I is
[2, 10]. The larger K means that more Gabor kernel parameters
are selected, and the larger I represents that more pixels are
included in superpixels. It is shown that the OA generally
rises with the increment of parameter K , demonstrating the
fusion effectiveness of Gabor filters with multiple kernels.
There are some declining fluctuations during the intermediate
K values on Indiana and Salinas datasets, and during the
lower K values on the Trento dataset. Moreover, the OA is
shown to be more stable with the larger values of parameter I ,
considering the integration improvement of various multiscale
superpixel segmentation. The OA starts to be stable from the
intermediate I values on Indiana and Salinas datasets, and
from the lower I values on the Trento dataset. Although it is
illustrated that the HSIs with high and low spatial resolutions
have different local changes on parameter analysis, they also
have a common stable tendency. Therefore, in order to balance
the feature redundancy, computation complexity, and classifi-
cation performance, K and I are specifically set to 4 and 7,
respectively, ensuring the robustness of SuVGF.

4) Module Effectiveness: We conduct several ablation
methods on three datasets separately to demonstrate the effec-
tiveness of modules in SuVGF. All ablation experiments are
classified by the RF classifier, differing in the feature extrac-
tion strategies. First, the SuRAW method utilizes a superpixel
map to regularize the RF classification result on the original
HSI data to demonstrate superpixel guidance without Gabor
filters. Second, the Gabor method uses traditional 3-D Gabor
wavelets with 52 filters to obtain magnitude features, which
are stacked along the spectral direction and input into the
classifier. Third, the FCG method applies the LTP coding to
phase features achieved by traditional 3-D Gabor wavelets,
and only the filters parallel to the spectral axis are used. This
comparison is designed to demonstrate the characterization
capability of phase features versus magnitude features. Fourth,
the VG method uses the 3-D VG wavelets and introduces
five types of response intensity parameters to obtain phase
features, with the parallel orientation to the spectral axis.
It is set to further confirm the effectiveness of Gabor phase
features with different sinusoids. Fifth, the SuVG method
adopts the superpixel-based integrated scale map to guide the
Gaussian smoothing on VG features to reflect the smoothing
effectiveness based on multiscale superpixel segmentation and
spatial structure extraction. Finally, our SuVGF method fuses
all the variable 3-D Gabor features of multiple kernels to
gain the comprehensive representation and final classification,
which exhibits the complementarity of features and the need
for MKL.

The comparison results of six ablation methods on three
datasets are listed in Tables IV–VI, where only three labeled
samples per class were selected randomly for training. The
SuRAW method shows the worst classification performance
on Indiana and Trento datasets, and the Gabor method shows
the worst on the Salinas dataset. The raw HSI information
on Salinas is more distinct between categories for land cover
recognition than other datasets. It is illustrated that traditional
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TABLE IV

CLASSIFICATION ACCURACY (%) AND KAPPA OF MODULE
EFFECTIVENESS ON THE INDIANA DATASET WITH THREE

LABELED SAMPLES PER CLASS AS THE TRAINING SET

TABLE V

CLASSIFICATION ACCURACY (%) AND KAPPA OF MODULE
EFFECTIVENESS ON THE SALINAS DATASET WITH THREE

LABELED SAMPLES PER CLASS AS THE TRAINING SET

TABLE VI

CLASSIFICATION ACCURACY (%) AND KAPPA OF MODULE

EFFECTIVENESS ON THE TRENTO DATASET WITH THREE

LABELED SAMPLES PER CLASS AS THE TRAINING SET

3-D Gabor wavelets enhance the feature representation but
inevitably exacerbate the Hughes phenomenon due to a large
amount of feature redundancy. Hence, we only use the 3-D
Gabor filters parallel to the spectral axis in the SuVGF method
to reduce redundant information and retain significant features.
The FCG method achieves higher accuracy than the Gabor

Fig. 12. Indiana HSI: (a) OA and (b) Kappa as functions of the number of
labeled samples per class.

method, which indicates that the phase features become more
identifiable after l LGTP feature coding. Moreover, the VG
method can capture a richer diversity of features with multiple
response intensity parameters for higher accuracy, thus sup-
porting the need to introduce a response strength parameter.
Besides, we reduce one parameter to decrease the algorithm
complexity. The accuracy of SuVG is furthermore enhanced
compared to the previous methods, indicating that superpixel
segmentation can effectively extract the spatial structure infor-
mation and guide the adaptive Gaussian filter to suppress noise
significantly. As expected, our SuVGF method yields the best
results with the highest accuracy and consistency, considering
it fuses Gabor features with multiple kernels and integrates
multiscale spatial structure information, to enhance the feature
discriminability.

V. EXPERIMENTAL RESULT

In this section, comparison experiments are carried out
and analyzed to demonstrate the superiority of the SuVGF
method. Specifically, the raw hyperspectral image (RAW)
method implements land cover classification directly using
spectral values and RF classifier, without further feature
extraction. The KPCA method uses a typical DR approach
of kernel principal component extraction to transform the
spectral features for HSI classification. The other three com-
mon feature extraction methods for comparison are nonlinear
multiple feature learning-based classification (NMFL) [64],
EMAP [65], and LBP with extreme learning machine (LBP-
ELM) [22]. In addition, the 3-D generative adversarial network
(3-DGAN) [16] and multitask deep learning in the open world
(MDL4OW) [66] are well-designed deep network methods
under few-shot conditions. Among all comparison methods,
the RAW, KPCA, and EMAP make use of RF classifiers,
and the others employ their own classifiers. We analyze the
performance of experiments using three to 15 training samples
per class in terms of OA, CA, and κ , with cross-validations
for ten times. First, the curves of OA and kappa are displayed
to analyze the performance trends with increasing training
samples. Second, the evaluation results for three datasets with
three labeled samples per class as training set are listed in
tables on average. Third, the classification result maps are
drawn for qualitative analysis and visual comparison.

A. Classification Results

The OA and κ of Indiana, Salinas, and Trento datasets
are shown in Figs. 12–14, respectively. All figures depict the
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Fig. 13. Salinas HSI: (a) OA and (b) Kappa as functions of the number of
labeled samples per class.

Fig. 14. Trento HSI: (a) OA and (b) Kappa as functions of the number of
labeled samples per class.

general rising trends for all methods with increasing training
samples, as more samples allow better feature extraction.
The OA of the Trento dataset is higher than that of the Salinas
and Indiana datasets because the Salinas and Indiana datasets
possess complex spatial distribution and confusing classes with
similar spectral features. In contrast, the Trento dataset has
more distinguishable categories in a much simpler distribution,
which is easy for classification. In general, the performance of
each method is gradually improved as the number of samples
increases, but not equally.

Specifically, the performance of RAW, KPCA, NMFL, and
LBP-ELM methods is relatively poor. The RAW method has
weak feature discriminability as no feature extraction process-
ing was done to HSI. The KPCA method only carries out
the DR from a spectral perspective, and a large amount of
valid information may be lost, resulting in low classification
accuracy. The NMFL method simply stacks the multiple linear
and nonlinear features without fusion strategies, which lacks
feature mining and complementary fusion, and the LBP-ELM
method does a similar operation after DR. However, there is
a dramatic improvement in the classification performance of
NMFL and LBP-ELM with an increasing number of samples
on Trento and Salinas datasets, respectively, showing that
they are more sensitive to the sample set size. In addition,
the NMFL method has the lowest accuracy on the Indiana
dataset but presents good classification performance on the
Salinas dataset, considering it is not a stable method for
HSIs under various conditions. In contrast, the EMAP method
shows a more steady growth trend than NMFL and LBP-
ELM methods on different datasets since the effective single
feature expression is better than the direct combination of
confusing features without a proper strategy. Moreover, the
MDL4OW method accomplishes the classification and recon-
struction simultaneously in a multitask framework to obtain

a better learning effect, and the 3-DGAN method makes full
use of the 1-D hyperspectral profile and 3-D spectral–spatial
information to enhance feature extraction. Both MDL4OW
and 3-DGAN show stable classification performance, but deep
neural networks still suffer from the problems of the small
sample set and overfitting due to a large number of learnable
parameters in the model and the requirement of abundant
training samples. As we expect, the SuVGF method con-
sistently shows the best classification performance with an
increasing number of samples, especially using only three
training samples per class. It demonstrates that the fusion
strategy of multiple kernels is conductive to comprehensive
feature representation, and superpixel guidance contributes to
reducing noise interference and raising accuracy.

B. Quantitative Analysis

We present the CA, OA, and κ in Tables VII–IX with
only three samples per class, which is used to analyze the
method performance in addressing small sample problem. For
the Indiana dataset, as Table VII reveals, C3 (corn-min till),
C4 (soybean-no till), C6 (soybean-clean till), C13 (corn-no
till), and C14 (soybean-min till) are particularly difficult to
classify because they are corn and soybean in different stages
of cultivation with similar plant characteristics. Despite this,
SuVGF achieves the best classification results for C13 and
C14, and has stable performance for C3, C4, and C6. C11
(Corn) presents a small patch with fewer labeled samples,
which requires the extraction and discrimination ability of the
spatial structure and object relationship for the algorithm. The
differences exhibited by methods are particularly large on C11,
and NMFL and SuVGF obtain the worst and best classifica-
tion accuracies, respectively. Despite the uneven distribution
of samples in Indiana and weak separability of vegetation
categories, SuVGF achieves 100% or near 100% accuracy on
the C2 (hay-windrowed), C10 (grass/pasture-mowed), and C12
(oats) classes.

For the Salinas dataset, C1 (brocoli green weeds) and C2
(brocoli green weeds 2) are weeds, and C11 (lettuce romaine
4wk), C12 (lettuce romaine 5wk), C13 (lettuce romaine 6wk),
and C14 (lettuce romaine 7wk) are lettuces in various periods.
These categories are relatively distinguishable due to the fast
growth and obvious feature changes of weeds and lettuces,
and most methods have correspondingly good recognition,
except the MDL4OW on C2. Moreover, C3 (Fallow), C4
(Fallow rough plow), and C5 (Fallow smooth) are croplands
in different states, and they are also relatively easy to classify
due to the good regularity of distribution. In contrast, C8
(Grapes untrained) and C15 (Vinyard untrained) are similar
categories with confusing properties, which are hard to iden-
tify. Consequently, SuVGF achieves over 95% accuracy for
most classes as Table VIII displays due to the VG feature
fusion and multiscale spatial structure description.

For the Trento dataset, C4 (Wood) and C5 (Vineyard)
are different categories with distinguishable features, and the
SuVGF method achieves the best CA close to 100%. C2
(Buildings) and C6 (Roads) are artificial surfaces, and C6 has
a relatively lower classification accuracy in all methods due to
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TABLE VII

CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE FOR INDIANA ON THE TEST SET WITH
THREE LABELED SAMPLES PER CLASS AS THE TRAINING SET

TABLE VIII

CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE FOR SALINAS ON THE TEST SET WITH

THREE LABELED SAMPLES PER CLASS AS THE TRAINING SET

TABLE IX

CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE FOR TRENTO ON THE TEST SET WITH

THREE LABELED SAMPLES PER CLASS AS THE TRAINING SET

its linearly narrow shape and distribution along with other land
covers. C2 is distributed discretely with a blocky appearance,
which is more identifiable than C6, and the methods have
higher recognition accuracy on C2 than C6. The results of all
methods are different, but the SuVGF method still achieves
the best performance overall.

C. Qualitative Analysis

The classification maps of all methods in a single experi-
ment are shown in Figs. 15–17, which displays visual results
for qualitative analysis. Compared to the classification maps

of the RAW method, KPCA reduces the fragmentation of C2
and C14 on Indiana, decreases the confusion of C3 on Salinas,
and enhances the continuity of C1 on Trento, respectively.
It is suggested that the DR method can reduce the intraclass
spectral variation and, thus, enhance the feature discrimination.
The NMFL method has an obvious salt and pepper effect in
the classification maps, which is particularly evident in the
distribution of C2 and C8 on the Indiana dataset. LBP-ELM
and EMAP methods enhance the regional continuity through
spatial feature extraction, but their classification results for
pixels close to boundaries are relatively poor. It is indicated
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Fig. 15. Indiana classification maps (three labeled samples per class for training). (a) Training set. (b) Testing set. (c) RAW (41.73%). (d) KPCA (38.92%).
(e) NMFL (41.70%). (f) EMAP (36.27%). (g) LBP-ELM (54.33%). (h) 3-DGAN (54.10%). (i) MDL4OW (42.06%). (j) SuVGF (67.32%).

Fig. 16. Salinas classification maps (three labeled samples per class for
training). (a) Training set. (b) Testing set. (c) RAW (81.49%). (d) KPCA
(82.35%). (e) NMFL (79.46%). (f) EMAP (82.12%). (g) LBP-ELM (66.07%).
(h) 3-DGAN (87.07%). (i) MDL4OW (76.01%). (j) SuVGF (88.54%).

that single feature extraction does not make full use of the
abundant information and reduces the identification accuracy.
The class boundaries of 3-DGAN and MDL4OW methods
remain relatively clear, and the confusion within boundaries is
low, considering the contribution of integrated spatial–spectral
feature learning. Besides, 3-DGAN and MDL4OW tend to
have the mixed classification results of C1, C4, and C5 on the
Trento dataset and are not well differentiated for the man-made
surface categories (C2 and C6) with similar spectral attributes.
In contrast, SuVGF achieves the best results of classification
maps on three datasets. Compared to other methods, SuVGF
has the lowest category confusion for C8 in Indiana, obtains
the highest regional continuity for C6 and C15 on Salinas, and
describes the clearest boundaries for C5 on Trento, respec-
tively. It is demonstrated that the strategy of multiple kernel
feature fusion and guidance of multiscale superpixels have
advantages of comprehensive feature extraction and accurate
land cover classification.

Fig. 17. Trento classification maps (three labeled samples per class for
training). (a) Training set. (b) Testing set. (c) RAW (69.38%). (d) KPCA
(65.64%). (e) NMFL (60.70%). (f) EMAP (83.47%). (g) LBP-ELM (79.74%).
(h) 3-DGAN (79.42%). (i) MDL4OW (89.08%). (j) SuVGF (91.46%).

VI. CONCLUSION

This article proposes a SuVGF method for HIS classification
to alleviate the small sample size problem. The 3-D Gabor
filters parallel to the spectral axis are applied to achieve
the phase feature extraction and encoding, decreasing data
redundancy and enhancing feature robustness. Moreover, the
designed plane sine wave of 3-D Gabor reduces one response
intensity parameter, and we can obtain the rich spectral–spatial
features through groups of variable 3-D Gabor filters. Mean-
while, we exploit the complementary characteristics of diverse
multiscale superpixel segmentation, including ERS and SNIC
algorithms, to perform the spatial structure extraction. The
Gaussian smoothing guided by a superpixel-based scale map
has a good effect on noise suppression. Finally, the fusion of
all regularized features significantly improves the generaliza-
tion ability and classification accuracy of the proposed SuVGF
method.
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The superiority of the SuVGF method is demonstrated
with the best performance on three real-world HSI datasets,
which is motivated by the insufficient exploitation of Gabor
filters and inadequate use of spatial information. The SuVGF
improves the feature expression and classification performance
by making full use of the highly informative contents in HSI.
The relevant parameter settings are applicable to three datasets
in this study, and we believe that these settings are also
adaptable to other hyperspectral data without sacrificing the
generalization ability. In future work, the attention mechanism
and more fusion strategies will be introduced to describe
the different contributions of multiple kernels and multiscale
superpixels for classification.

REFERENCES

[1] A. Plaza et al., “Recent advances in techniques for hyperspectral image
processing,” Remote Sens. Environ., vol. 113, no. 1, pp. 110–122,
Sep. 2009.

[2] Q. Tong, Y. Xue, and L. Zhang, “Progress in hyperspectral remote
sensing science and technology in China over the past three decades,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1,
pp. 70–91, Jan. 2014.

[3] M. A. Lee, Y. Huang, H. Yao, S. J. Thomson, and L. M. Bruce,
“Determining the effects of storage on cotton and soybean leaf samples
for hyperspectral analysis,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 7, no. 6, pp. 2562–2570, Jun. 2014.

[4] A. Brook and E. B. Dor, “Quantitative detection of settled dust over
green canopy using sparse unmixing of airborne hyperspectral data,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2,
pp. 884–897, Feb. 2016.

[5] F. Müller-Karger et al., “Satellite remote sensing in support of an
integrated ocean observing system,” IEEE Geosci. Remote Sens. Mag.,
vol. 1, no. 4, pp. 8–18, Dec. 2013.

[6] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,
N. M. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data
analysis and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1,
no. 2, pp. 6–36, Jun. 2013.

[7] P. Ghamisi et al., “Advances in hyperspectral image and signal process-
ing: A comprehensive overview of the state of the art,” IEEE Geosci.
Remote Sens. Mag., vol. 5, no. 4, pp. 37–78, Dec. 2017.

[8] C.-I. Chang and S. Wang, “Constrained band selection for hyper-
spectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6,
pp. 1575–1585, Jun. 2006.

[9] H. Su, H. Yang, Q. Du, and Y. Sheng, “Semisupervised band clustering
for dimensionality reduction of hyperspectral imagery,” IEEE Geosci.
Remote Sens. Lett., vol. 8, no. 6, pp. 1135–1139, Nov. 2011.

[10] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of hyper-
spectral images with regularized linear discriminant analysis,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862–873, Mar. 2009.

[11] J. Zabalza et al., “Novel two-dimensional singular spectrum analysis for
effective feature extraction and data classification in hyperspectral imag-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4418–4433,
Aug. 2015.

[12] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Kernel principal
component analysis for the classification of hyperspectral remote sensing
data over urban areas,” EURASIP J. Adv. Signal Process., vol. 2009,
no. 1, pp. 1–14, Dec. 2009.

[13] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, Oct. 2016.

[14] J. M. Haut, M. E. Paoletti, J. Plaza, J. Li, and A. Plaza, “Active learning
with convolutional neural networks for hyperspectral image classification
using a new Bayesian approach,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 11, pp. 6440–6461, Nov. 2018.

[15] X. Yang, Y. Ye, X. Li, R. Y. K. Lau, X. Zhang, and X. Huang,
“Hyperspectral image classification with deep learning models,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 9, pp. 5408–5423, Sep. 2018.

[16] L. Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Generative
adversarial networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 9, pp. 5046–5063, Sep. 2018.

[17] Y. Zhan, D. Hu, Y. Wang, and X. Yu, “Semisupervised hyperspectral
image classification based on generative adversarial networks,” IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 2, pp. 212–216, Feb. 2018.

[18] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3639–3655, Jul. 2016.

[19] H. Wu and S. Prasad, “Convolutional recurrent neural networks for
hyperspectral data classification,” Remote Sens., vol. 9, no. 3, p. 298,
Mar. 2017.

[20] X. Huang, X., Han, L. Zhang, J. Gong, W. Liao, and J. A. Benedikts-
son, “Generalized differential morphological profiles for remote sensing
image classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 9, no. 4, pp. 1736–1751, Apr. 2016.

[21] Y. Y. Tang, Y. Lu, and H. Yuan, “Hyperspectral image classification
based on three-dimensional scattering wavelet transform,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 5, pp. 2467–2480, May 2015.

[22] W. Li, C. Chen, H. Su, and Q. Du, “Local binary patterns and extreme
learning machine for hyperspectral imagery classification,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 7, pp. 3681–3693, Jul. 2015.

[23] P. Ghamisi, M. D. Mura, and J. A. Benediktsson, “A survey on spectral–
spatial classification techniques based on attribute profiles,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 5, pp. 2335–2353, May 2015.

[24] P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, “Spectral–
spatial classification of hyperspectral images based on hidden Markov
random fields,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5,
pp. 2565–2574, May 2014.

[25] J. Li, J. Bioucas-Dias, and A. Plaza, “Spectral–spatial hyperspectral
image segmentation using subspace multinomial logistic regression and
Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 50,
no. 3, pp. 809–823, Aug. 2012.

[26] G. Cheng, Z. Li, J. Han, X. Yao, and L. Guo, “Exploring hierarchical
convolutional features for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6712–6722, Jun. 2018.

[27] W. Fu, S. Li, L. Fang, X. Kang, and J. A. Benediktsson, “Hyperspec-
tral image classification via shape-adaptive joint sparse representation,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2,
pp. 556–567, Feb. 2016.

[28] S. Jia, J. Hu, Y. Xie, L. Shen, X. Jia, and Q. Li, “Gabor cube
selection based multitask joint sparse representation for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6,
pp. 3174–3187, Jun. 2016.

[29] S. Mei, J. Hou, J. Chen, L.-P. Chau, and Q. Du, “Simultaneous
spatial and spectral low-rank representation of hyperspectral images
for classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5,
pp. 2872–2886, May 2018.

[30] S. Jia, B. Deng, J. Zhu, X. Jia, and Q. Li, “Superpixel-based multitask
learning framework for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 5, pp. 2575–2588, May 2017.

[31] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and
J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral
images,” Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.

[32] P. Ghamisi, J. N. A. Benediktsson, and J. R. Sveinsson, “Automatic
spectral–spatial classification framework based on attribute profiles
and supervised feature extraction,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 9, pp. 5771–5782, Sep. 2014.

[33] S. Jia, B. Deng, J. Zhu, X. Jia, and Q. Li, “Local binary pattern-based
hyperspectral image classification with superpixel guidance,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 749–759, Feb. 2018.

[34] J. Yang, Y.-Q. Zhao, and J. C.-W. Chan, “Learning and transferring deep
joint spectral–spatial features for hyperspectral classification,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4729–4742, Aug. 2017.

[35] X. Xu, W. Li, Q. Ran, Q. Du, L. Gao, and B. Zhang, “Multisource remote
sensing data classification based on convolutional neural network,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 937–949, Feb. 2018.

[36] S. Jia, X. Deng, J. Zhu, M. Xu, J. Zhou, and X. Jia, “Collabora-
tive representation-based multiscale superpixel fusion for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10,
pp. 7770–7784, Oct. 2019.

[37] S. Li, T. Lu, L. Fang, X. Jia, and J. A. Benediktsson, “Probabilistic fusion
of pixel-level and superpixel-level hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7416–7430,
Dec. 2016.

[38] F. Tsai, C. K. Chang, and G. R. Liu, “Texture analysis for three
dimensional remote sensing data by 3D GLCM,” in Proc. Asian Conf.
Remote Sens. (ACRS), 2006, pp. 430–435.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 11,2022 at 08:06:44 UTC from IEEE Xplore.  Restrictions apply. 



5523816 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[39] X. Guo, X. Huang, and L. Zhang, “Three-dimensional wavelet texture
feature extraction and classification for multi/hyperspectral imagery,”
IEEE Geosci. Remote Sens. Lett., vol. 11, no. 12, pp. 2183–2187,
Dec. 2014.

[40] S. Jia, J. Hu, J. Zhu, X. Jia, and Q. Li, “Three-dimensional local binary
patterns for hyperspectral imagery classification,” IEEE Trans. Geosci.
Remote Sens., vol. 55, no. 4, pp. 2399–2413, Apr. 2017.

[41] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 27, 2014, pp. 1–9.

[42] Y.-R. Yeh, T.-C. Lin, Y.-Y. Chung, and Y.-C. F. Wang, “A novel
multiple kernel learning framework for heterogeneous feature fusion and
variable selection,” IEEE Trans. Multimedia, vol. 14, no. 3, pp. 563–574,
Jun. 2012.

[43] D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski, “Learning
relevant image features with multiple-kernel classification,” IEEE Trans.
Geosci. Remote Sens., vol. 48, no. 10, pp. 3780–3791, Oct. 2010.

[44] W. Li and Q. Du, “Gabor-filtering-based nearest regularized subspace
for hyperspectral image classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 4, pp. 1012–1022, Apr. 2014.

[45] L. Shen and S. Jia, “Three-dimensional Gabor wavelets for pixel-based
hyperspectral imagery classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 49, no. 12, pp. 5039–5046, Dec. 2011.

[46] J.-M. Geusebroek, A. W. M. Smeulders, and J. van de Weijer, “Fast
anisotropic Gauss filtering,” IEEE Trans. Image Process., vol. 12, no. 8,
pp. 938–943, Aug. 2003.

[47] W. V. Hecke, A. Leemans, S. D. Backer, B. Jeurissen, P. M. Parizel, and
J. Sijbers, “Comparing isotropic and anisotropic smoothing for voxel-
based DTI analyses: A simulation study,” Hum. Brain Mapping, vol. 31,
no. 1, pp. 98–114, 2010.

[48] S. Jia, Z. Zhu, L. Shen, and Q. Li, “A two-stage feature selection
framework for hyperspectral image classification using few labeled
samples,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 4, pp. 1023–1035, Apr. 2014.

[49] Z. Zhu, S. Jia, S. He, Y. Sun, Z. Ji, and L. Shen, “Three-dimensional
Gabor feature extraction for hyperspectral imagery classification using
a memetic framework,” Inf. Sci., vol. 298, pp. 274–287, Mar. 2015.

[50] S. Jia, L. Shen, J. Zhu, and Q. Li, “A 3-D Gabor phase-based coding
and matching framework for hyperspectral imagery classification,” IEEE
Trans. Cybern., vol. 48, no. 4, pp. 1176–1188, Apr. 2018.

[51] S. Jia, Z. Lin, B. Deng, J. Zhu, and Q. Li, “Cascade superpixel
regularized Gabor feature fusion for hyperspectral image classification,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1638–1652,
May 2019.

[52] S. Jia et al., “Flexible Gabor-based superpixel-level unsupervised LDA
for hyperspectral image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 12, pp. 10394–10409, Dec. 2021.

[53] F. Riaz, A. Hassan, S. Rehman, and U. Qamar, “Texture classification
using rotation-and scale-invariant Gabor texture features,” IEEE Signal
Process. Lett., vol. 20, no. 6, pp. 607–610, Apr. 2013.

[54] L. Shen and S. Zheng, “Hyperspectral face recognition using 3D Gabor
wavelets,” in Proc. IEEE Conf. Pattern Recognit. (ICPR), Nov. 2012,
pp. 1574–1577.

[55] L. Shen and L. Bai, “3D Gabor wavelets for evaluating SPM nor-
malization algorithm,” Med. Image Anal., vol. 12, no. 3, pp. 375–383,
Jun. 2008.

[56] X. Ren and J. Malik, “Learning a classification model for segmentation,”
in Proc. 9th IEEE Int. Conf. Comput. Vis., vol. 2, Oct. 2003, pp. 10–17.

[57] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate
superpixel segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2011, pp. 2097–2104.

[58] R. Achanta and S. Susstrunk, “Superpixels and polygons using simple
non-iterative clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 4651–4660.

[59] F. Meng, X. Wang, F. Shao, D. Wang, and X. Hua, “Energy-efficient
Gabor kernels in neural networks with genetic algorithm training
method,” Electronics, vol. 8, no. 1, p. 105, Jan. 2019.

[60] J. G. Daugman, “High confidence visual recognition of persons by a test
of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 15, no. 11, pp. 1148–1161, Nov. 1993.

[61] X. Tan and B. Triggs, “Enhanced local texture feature sets for face
recognition under difficult lighting conditions,” IEEE Trans. Image
Process., vol. 19, no. 6, pp. 1635–1650, Jun. 2010.

[62] F. Xiong, J. Chen, J. Zhou, and Y. Qian, “Superpixel-based nonnegative
tensor factorization for hyperspectral unmixing,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2018, pp. 6392–6395.

[63] J. A. Richards and J. Richards, Remote Sensing Digital Image Analysis,
vol. 3. Berlin, Germany: Springer, 1999.

[64] J. Li et al., “Multiple feature learning for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592–1606,
Mar. 2015.

[65] M. M. Dalla, B. J. Atli, B. Waske, and L. Bruzzone, “Extended profiles
with morphological attribute filters for the analysis of hyperspectral
data,” Int. J. Remote Sens., vol. 31, no. 22, pp. 5975–5991, 2010.

[66] S. Liu, Q. Shi, and L. Zhang, “Few-shot hyperspectral image classifica-
tion with unknown classes using multitask deep learning,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 6, pp. 5085–5102, Jun. 2021.

Shuyu Zhang received the B.E. and Ph.D. degrees
from the College of Earth Sciences, Zhejiang
University, Hangzhou, China, in 2015 and 2020,
respectively.

She is a Post-Doctoral Researcher with the Col-
lege of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China. Her research
interests include hyperspectral image classification
and deep learning.

Dingding Tang received the B.E. degree in infor-
mation technology from Southwest Forestry Univer-
sity, Kunming, China, in 2019. She is pursuing the
M.E. degree with the College of Computer Science
and Software Engineering, Shenzhen University,
Shenzhen, China.

Her research interests include hyperspectral image
processing and machine learning.

Nanying Li received the M.S. degree in information
and communication engineering from the Hunan
Institute of Science and Technology, Yueyang,
China, in 2021. She is pursuing the Ph.D. degree
in computer science and technology from Shenzhen
University, Shenzhen, China.

Her research interests include hyperspectral image
classification and anomaly detection.

Xiuping Jia (Fellow, IEEE) received the B.Eng.
degree from the Beijing University of Posts and
Telecommunications, Beijing, China, in 1982, and
the Ph.D. degree in electrical engineering from the
University of New South Wales, Canberra, Australia,
in 1996.

Since 1988, she has been with the School of
Information Technology and Electrical Engineering,
University of New South Wales, where she is a
Senior Lecturer. She is also a Guest Professor with
Harbin Engineering University, Harbin, China, and

an Adjunct Researcher with the National Engineering Research Center for
Information Technology in Agriculture, Beijing, China. She is the coauthor
of the remote sensing textbook titled Remote Sensing Digital Image Analysis
[Springer-Verlag, third (1999) and fourth edition (2006)]. Her research inter-
ests include remote sensing, image processing, and spatial data analysis.

Dr. Jia is a Subject Editor for the Journal of Soils and Sediments and
an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING.

Sen Jia (Senior Member, IEEE) received the B.E.
and Ph.D. degrees from the College of Computer
Science, Zhejiang University, Hangzhou, China, in
2002 and 2007, respectively.

Since 2008, he has been with the College of Com-
puter Science and Software Engineering, Shenzhen
University, Shenzhen, China, where he is a Full Pro-
fessor. His research interests include hyperspectral
image processing, signal and image processing, and
machine learning.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 11,2022 at 08:06:44 UTC from IEEE Xplore.  Restrictions apply. 


