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A B S T R A C T   

The existence of clouds affects the quality of optical remote sensing images. Cloud removal is an important 
preprocessing procedure to effectively improve the utilization of optical remote sensing images. Thin clouds 
partly obscure the land surfaces beneath them, making it possible to correct the cloudy scenes according to the 
available information. In this research, we introduce the attention mechanism-based generative adversarial 
networks for cloud removal (AMGAN-CR) method for Landsat images. First, attention maps of the input cloudy 
images are generated to extract the cloud distributions and features through an attentive recurrent network. 
Second, clouds are removed by an attentive residual network under the guidance of the attention maps. Finally, 
the generated feature maps are fed to a reconstruction network to restore the final cloud-free images. The 
networks are trained by cloudy and cloud-free Landsat image pairs, and the cloudy images are tested to validate 
the effectiveness of AMGAN-CR. Both simulated and real cloud experimental results show that the proposed 
method is more outstanding than the other five state-of-the-art traditional and deep learning methods in 
removing cloud.   

1. Introduction 

Because of the progress of remote sensing technology and the 
upgrading of hardware equipment, optical remote sensing images with 
higher spatial and spectral resolution are now available. The sensors 
onboard satellites, airplanes or other airborne systems collect electro-
magnetic radiation signals of ground objects. These data can be used in 
Earth observation applications, such as resource detection, wetland 
resource monitoring, vegetation management, atmospheric environ-
ment monitoring and disaster monitoring (Kennedy et al., 2007; Mueller 
et al., 2016; Inglada et al., 2017). Unfortunately, affected by external 
factors such as climate and environment, the acquired remote sensing 
images are often obscured by clouds, which affects the interpretation 
accuracy of remote sensing images and the interpretation of target fea-
tures. According to statistics, 35% of the Earth's surface is covered by 
clouds in a year (Ju and Roy, 2008). When solar radiation passes 

through the atmosphere, it will be affected by scattering, reflection, and 
absorption of the atmosphere or clouds. The electromagnetic wave 
received by the remote sensing satellite sensor will have a certain degree 
of loss. In this case, the information contaminated by clouds is not 
conducive to subsequent image processing and interpretation, and cloud 
contamination greatly affects the availability of images for further 
research. 

To solve the problem that large amount of remote sensing images are 
covered by clouds, scholars have proposed different methods. These 
methods can be classified into two categories: traditional methods and 
deep learning methods. Traditional cloud removal methods take 
advantage of the spatial or spectral features of clouds to correct or 
reconstruct cloudy images. Before the rise of deep learning techniques, 
traditional single-layer methods were mainly developed to address the 
cloud coverage problem in the last few decades. Traditional methods can 
be categorized into multi-spectral and multi-temporal algorithms 
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depending on how each method uses cloud-free reference images. 
Among them, the multispectral method is used to process thin clouds 
that do not completely cover ground objects, and the multitemporal 
method is generally used to restore the image covered by thick clouds. 
Zhang et al. (2002) created a haze optimized transformation (HOT) 
approach to detect and describe the spatial distribution of haze or clouds 
in Landsat images. Several other researchers (Chen et al., 2016; Hong 
and Zhang, 2018) have followed and extended the HOT method to 
execute thin cloud or haze removal. Xu et al. (2015) introduced a novel 
approach based on signal transmission and spectral unmixing, which 
considers the reflection, transmission, and absorption of thin clouds. 
Furthermore, Xu et al. (2019) established an excellent thin cloud 
removal approach using a noise-adjusted principal components trans-
form model. Lv et al. (2016) proposed an algorithm based on empirical 
analysis and radiation transmission model (RTM) to eliminate thin 
clouds in the visible bands. The histogram of the image corrected by the 
algorithm completely overlaps the histogram curve of the reference 
image, which confirms the effectiveness of the algorithm. Zhou and 
Wang (2019) improved the method on the basis of Lv et al. (2016) by 
using band 9 as supplementary information and combining band 9 with 
RTM-based algorithm to remove thin clouds. Tedlek et al. (2018) used 
the K-means clustering method to divide cloud-free images into several 
homogeneous regions and employed the level set method to determine 
the cloud thickness level in each pixel. Subsequently, the authors 
reconstructed the areas under thin clouds. Several multispectral 
methods synthesize contaminated cloudy areas and can be categorized 
as inpainting methods. For example, the geometric flow curves of 
distinct regions of the image were found in Maalouf et al. (2009) by 
employing the bandelet transform with multi-scale grouping. After 
accurately representing this geometric shape, the information contained 
within the cloud contaminated area was synthesized by propagating the 
geometrical flow curves in this area. Some other similar multispectral 
methods to remove clouds can be found in Cheng et al. (2014) and Li 
et al. (2019b). 

Multitemporal methods require additional clear images as auxiliary 
data to reconstruct the cloud-covered ground. Lin et al. (2012) detected 
clouds and cloud shadows in the input image using a semi-automatic 
cloud detection method. The assessed image quality was based on the 
structural similarity index, and finally, information cloning was used to 
fill the cloudy areas. Lin et al. (2013) has made improvements on the 
basis of Lin et al. (2012), adding processing procedures for image in-
tensity normalization, multitemporal image segmentation and seam 
determination. Chen et al. (2019a) decomposed cloud-contaminated 
images into low-rank clean image components and sparse components 
and detected cloudy and shadowy regions by the sparse components. 
Finally, the cloud and shadow detection results were used to guide the 
information compensation of the target image. Xu et al. (2016) pre-
sented a multitemporal dictionary learning-based cloud removal meth-
odology. The coefficients in the reference image were combined with 
the dictionary learned in the target image to execute the removal pro-
cedure. Wang et al. (2016) used the temporally contiguous robust ma-
trix completion to restore the missing scenes from clean regions. 

In recent years, deep learning techniques have demonstrated sig-
nificant benefits in computer vision and image processing and have been 
applied in noise removal, target identification, and image classification 
fields. Accordingly, cloud removal by deep learning models has been 
expected and investigated. Mao et al. (2016) developed a network that is 
composed of multiple layers of convolution and deconvolution opera-
tors, and skip connection is added to increase the efficiency of image 
restoration. In Zhang et al. (2017), residual blocks are utilized to better 
eliminate the distortions induced by additive noise. The approach pro-
vided in Qin et al. (2018) depicted thin clouds as haze covers in each 
band and utilized a multiscale dehazing convolutional neural network 
(CNN) to remove clouds. Li et al. (2019a) presented an end-to-end re-
sidual symmetrical concatenation network (RSC-Net) for thin cloud 
removal that estimates the cloudless result straight from the cloud Ta
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contaminated image. A self-trained multiscale full convolutional 
network (FCN) for cloud removal from bitemporal images was designed 
in Ji et al. (2020). Simultaneously, a deep residual neural network ar-
chitecture was built in Meraner et al. (2020) to remove clouds from 
multispectral Sentinel-2 images. Multisensor data are also used as 
additional data in many methods. SAR-optical data fusion is used to 
guide image reconstruction by using synergistic characteristics. Chen 
et al. (2019b) suggested a CNN architecture for detecting thick clouds. In 
addition, cloudy ZY-3 satellite images were removed using the content 
generation network, texture generation network, and spectrum gener-
ation network. Li et al. (2019b) proposed a convolutional-mapping- 
deconvolutional network for cloud removal with optical and SAR data. 
Convolutional layers were used for encoding, mapping layers for feature 
transfer, and deconvolutional layers for decoding. Adding spectral in-
formation to the reconstruction of missing data provides another solu-
tion. In Gao et al. (2020), SAR images were converted into simulated 
optical images using a special convolutional neural network. The 
missing areas were subsequently reconstructed using SAR data, simu-
lated optical images, and actual optical images affected by clouds, 
yielding a cloud-free output with correct spectral accuracy and high- 
frequency texture. Table 1 summarizes the advantages and limitations 
of these techniques briefly. 

Recently, generative adversarial networks (GANs) (Goodfellow et al., 
2014) have been discovered to be effective in various fields, including 
removing clouds from remote sensing images. For example, Enomoto 
et al. (2017) exploited visible light to remove clouds from cloudy images 
by applying conditional generative adversarial networks (cGANs) 
(Mirza and Osindero, 2014) to multispectral images. Subsequently, 
Singh and Komodakis (2018) proposed a Cloud-GAN to map the re-
lations between cloudy images and cloud-free images. A semisupervised 
technique for thin cloud removal using unpaired images from various 
areas based on GANs and a physical model of cloud distortion was 
presented in Li et al. (2020). In Pan (2020), the authors combined the 
generative adversarial networks and the spatial attention mechanism, 
which can improve the ability of recovering cloudy areas and generating 
cloud-free images with higher qualities. 

Multispectral methods design specific feature extractors based on 
different cloud thicknesses or uses spectral relationships between 
different bands for inference. They have limited generalization abilities. 
For the multitemporal methods they assume the landcover changes are 
small between the multitemporal images processed. The difficulty with 

traditional methods is that it is vital to select which features are 
important for each individual task. Contrastingly, cloud removal 
methods based on deep learning can extract multilevel and multiscale 
features of clouds and are more robust, and provide the idea of end-to- 
end learning, in which the machine is fed by massive amounts of data 
labeled with high quality. End-to-end learning is a type of deep learning 
process where all the parameters are trained together rather than one by 
one. In end-to-end learning, we can use a single machine learning al-
gorithm rather than several individual components to achieve more 
effective performance. It has been demonstrated that deep learning 
methods perform better than traditional algorithms when it comes to 
complex problems, yet with trade-offs with regard to computing re-
quirements and time. However, the existing deep learning methods for 
cloud removal mainly deal with RGB images and do not make full use of 
multispectral and multitemporal characteristics of cloudy images. Most 
of them require accurate cloud masks as the basis so that cloud detection 
becomes the significant preprocessing step and has a great impact on 
cloud removal results. 

Considering the merits and demerits of the traditional and deep 
learning methods and inspired by the good performance of GANs in 
other computer vision tasks, in this paper, we develop attention 
mechanism-based GANs for cloud removal (AMGAN-CR) capable of 
addressing severe cloud cover problems in optical remote sensing im-
ages and enormously increase the accessibility of useful data. First, an 
attention module for cloud removal is created and embedded in a 
generative adversarial network. We find that attention mechanism can 
capture the possible distribution of cloud thickness. The attention map 
of cloud cover is generated to feed into the generative networks so that 
the generative network can pay greater attention to the structural in-
formation of the cloudy areas and the surrounding areas. The attention 
loss is used to calculate the degree of similarity between the attention 
map and the cloud mask, which improves the generalization ability of 
the networks. Second, the training and testing data are derived from 
Landsat 8 Operational Land Imager (OLI). The training process is 
accomplished in paired cloudy-clear images that are selected from the 
nearest date to avoid significant surface changes between them. The 
AMGAN-CR method is compared with five baseline advanced methods. 
Finally, we design ablation experiments to assess the parameters of the 
networks and the effects of the cloud mask on removal. Ablation 
experiment intends to assess how one variable affects the model per-
formance while holding the others unchanged. The results of both 

Fig. 1. The network structure of the attention mechanism-based generative adversarial networks for cloud removal (AMGAN-CR) method.  
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simulated and real experiments demonstrate the superior performance 
of AMGAN-CR quantitatively and qualitatively. AMGAN-CR does not 
rely on the performance of cloud detection as an attention module is 
embedded to generate the spatial attention map showing cloud distri-
butions. Seven multispectral bands are taken as the input to the network 
for cloud removal simultaneously, which can fully exploit the cloud 
features of multichannel remotely sensed images. 

The rest of this paper is arranged as follows: Section 2 introduces the 
proposed AMGAN-CR method, which mainly includes generator, 
discriminator and loss function. Landsat data preprocessing, dataset 
preparation, and experimental evaluation matrices are covered under 
Section 3. Experiments on simulated and real datasets, ablation exper-
iments and outcomes of AMGAN-CR and five baseline cloud removal 
approaches are shown in Section 4. At last, Section 5 and 6 describe the 
discussion and conclusion, respectively. 

2. Method 

2.1. The GAN architecture for cloud removal 

The whole architecture of our proposed AMGAN-CR is built on GANs, 
which are made up of two major components: the generative network 
(generator) and the discriminative network (discriminator). Suppose the 
generator is denoted as P and the discriminator is denoted as Q. The 
GANs can be described as a minimax issue in the following way: 

min
P
max
Q

V(Q,P) = Eu∼d(u)[logQ(u) ]+Ej∼d(j)[log(1 − Q(P(j) ) ) ], (1)  

where u represents the given input cloudy image, d(u) is denoted as 
distribution of u, j refers to the random noise data, d(j) is denoted as 
distribution of j, and the result of the discriminator is represented by Q 
(u), which indicates the probability of u being a true sample. P(j) is 
trained to minimize log(1 − Q(P(j))) or, alternatively, maximize Q(P(j)). 
Additionally, for each u, we wish Q(u) to be maximized. In this way, the 
function V(Q,P) plays a minimax game by training P and Q 
simultaneously. 

The idea of a two-player minimax game inspires us to take the GAN 
architecture into consideration to remove clouds and propose the 
AMGAN-CR method. As seen in Fig. 1, the generative network contains 
three networks: an attentive recurrent network, an attentive residual 

network, and a reconstruction network. The details of these three net-
works will be described in the next section. The generative network can 
learn the data distribution from a cloudy image, and the discriminator is 
used to evaluate the possibility that an image is a real clear image rather 
than a generated clear image from the generative network. The 
generator-discriminator game eventually approaches Nash equilibrium 
(Nash, 1950), which is a solution concept in game theory. When each 
player has chosen a strategy and no player can do better by changing 
their strategy. The goal of the generator is to yield fake clear images that 
the discriminator cannot recognize so that the generated images are as 
realistic as possible; the goal of the discriminator is to distinguish be-
tween actual and fake clear images as accurately as possible. The loss 
used in the networks is the total of the adversarial loss L cGAN, attention 
loss L Att and L L1 loss, which will be given in detail in Section 2.4. 

2.2. Generative network 

The generative network is used to generate fake clear images by 
learning the features of cloudy areas. As shown in Fig. 2, the first 
component of the generator, i.e., the attentive recurrent network, tries 
to detect the cloudy regions, and the attention maps are generated in this 
process. With the guidance of the attention maps and the input cloudy 
images, the attentive residual network can remove the clouds from the 
cloudy images via the learned negative residuals and the feature maps. 
Finally, the reconstruction network, which contains two residual blocks 
and one convolutional layer, can reconstruct a cloud-free image using 
the generated feature maps from the attentive residual network. 

2.2.1. Attentive recurrent network 
By choosing the certain inputs, the attention mechanism can enable 

neural networks to focus on a subset of their inputs. According to the 
specific task objectives, the direction of attention and the weighting 
model are adjusted. Attention mechanisms combined with deep learning 
models have become increasingly popular in recent years. Several 
methods have been presented in fine-grained object classification (Zhao 
et al., 2017), speech recognition (Chorowski et al., 2015), video 
captioning (Yan et al., 2019) and other areas. In a similar way, attention 
models are considered in our networks. 

We exploit an attention mechanism to locate the cloudy areas in an 
image and capture the characteristics of cloud cover. As shown in Fig. 2, 

Fig. 2. The generative network of AMGAN-CR.  
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the attentive recurrent network contains K blocks in total. Each block 
includes five residual blocks (ResNets), a convolutional long short-term 
memory (LSTM) (Hochreiter and Schmidhuber, 1997) unit, and con-
volutional layers. The cloudy images are first input to the ResNets, 
which are used to extract the features of clouds. Then, the LSTM and 
convolutional layers can generate the attention maps Ai, where i is 
denoted as the i-th attention map learned from the i-th block. Ai, 
accompanied by the input images, is fed into the (i + 1)-th block. 

Unlike a binary mask, the attention map is a nonbinary graph that 
represents the increase in attention from the cloudless pixels to the 
cloudy pixels, with values between 0 and 1. The attention map shows the 
spatial distribution of clouds. A larger value represents greater attention 
in the map. Two cloudy images and their attention maps are shown in 
Fig. 3 for a better intuitive understanding. Fig. 3 shows the real-color 
cloudy images and their corresponding attention maps produced by 
the attentive recurrent network. We can clearly see that the attention 
values of surfaces covered by clouds are larger than those with no cloud 
cover. Increasing values represent increasing thickness of clouds, which 
can help us locate and remove the cloud cover in cloudy images. 

The detailed structure of each component in the block is described as 
follows:  

• ResNet: As shown in Fig. 2, ResNet consists of five residual blocks, in 
which there are three convolutions with stride = 1, which is the step 

length of the kernel movement, three rectified linear unit (ReLU) 
activation functions, an addition operation, and a shortcut connec-
tion. ResNet helps extract features from the input image and makes 
use of a shortcut connection to skip some layers in the forward step of 
an input, functioning as a direct channel for information flow. 
Starting from the second block, the input is a combination of the 
cloudy images and the attention map learned from the previous 
block.  

• Long short-term memory (LSTM): LSTM is a common recurrent 
neural network design and crucial in the process of learning attention 
maps. Each LSTM unit is made up of a storage unit c, a hidden state h 
and three different types of gates: input gate it, forget gate ft and 
output gate ot. These units are used to control storage devices that 
read and write data. The three gates determine how much to forget, 
remember, and acquire, which can be automatically learned by the 
error backpropagation algorithm during the training process. In the 
meanwhile, LSTM also contains the update of memory unit c and the 
update of hidden state h:  

1) Update of storage unit c: ct− 1 is updated to ct. ct− 1 is first multiplied 
by the output value of the forget gate of ft, and only part of the 
historical memory is kept; The current state of C̃t to be newly 
memorized is the one that should be recorded, and the current C̃t to 
be memorized to the memory unit is produced by ht− 1 and xt.  

2) Update of the hidden state h: ht− 1 is updated to ht, and ht takes the 
value from the current memory unit ct. After applying the hyperbolic 
function, tanh, the memory unit is weakened by the input gate ot, 
that is, ht takes the value from ct in a certain proportion. 

Among them, t stands for time step, ct serves as an accumulator of 
state information, which will be propagated to the next LSTM unit. ht is 
the LSTM unit's output feature, which will be passed to the convolu-
tional layer to generate the initial attention map.  

• Convolutions: A 32-dimensional feature map can be learned from the 
LSTM. In this step, convolutions are used to translate the feature map 
into the desired dimension. Convolutional layers with stride of 1 and 
kernel size of 3 × 3 are used to generate the 2D attention maps. 

2.2.2. Attentive residual network 
As shown in Fig. 2, the attentive residual network includes a residual 

block, three convolutions, three ReLU activation functions, a multipli-
cation operation, an addition operation, and a shortcut connection. The 
cloudy images are the input of the residual block, which is the same as 
the block in ResNet shown in the upper right of Fig. 2. A feature map is 
output through this residual block and then fed to a convolutional layer 
with 1 × 1 kernels. Convolution kernels generally feature an odd 
number of lines and columns within the shape of a square. A ReLU 
activation is connected after the convolutional layer following the 2-nd 
convolution with 3 × 3 kernels, ReLU, and a 3-rd convolution with 1 × 1 
kernels. Then, the attention map learned from the attentive recurrent 
network multiplies the output to generate a 32-dimensional feature 
map. The removal of clouds is achieved through the learned negative 
residuals. That is, before the third ReLU activation function, the feature 
map is added to the output of the residual block. 

2.2.3. Reconstruction network 
The reconstruction network includes two residual blocks that are the 

same as described above and a final convolution with a kernel of size 3 
× 3 as illustrated in Fig. 2. It is worth noting that in the residual block, 
the first and third convolutions use kernel size = 1 × 1, and the second 
convolution uses kernel size = 3 × 3, stride = 1, and padding = 2. 
Padding refers to padding around the edges in order to preserve the edge 
information of an image, and we use zero-padding to preserve the spatial 
dimensionality. The dimension of the output feature maps learned from 

Fig. 3. Examples of cloudy images and their attention maps learned by the 
attentive recurrent network of AMGAN-CR. The attention map is a nonbinary 
graph that represents the increase in attention from cloudless pixels to cloudy 
pixels, with values between 0 and 1. 

Fig. 4. The discriminative network of AMGAN-CR.  
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the attentive residual network is 256 × 256 × 32. The final convolution 
reconstructs the spectral dimensions to match the input, that is, converts 
the 32 dimensions to the number of spectral bands of the cloudy image. 

2.3. Discriminative network 

The real clear image and fake clear image are input the discrimina-
tive network, which is used to evaluate the possibility that an image is a 
real clear image rather than a generated clear image from the generative 
network. As shown in the architecture in Fig. 4, the discriminator con-
sists of five CBRs and a 3 × 3 convolution, where C represents convo-
lutions with 3 × 3 kernels and stride = 1, B is denoted as the batch 
normalization, and R refers to the activation function ReLU. The 
convolution in the first CBR transforms the input 7-dimensional data 
into 32-dimensional features, followed feature dimension of each CBR 
was 64, 128, 256, 512 from left to right, all using 4 × 4 kernels and stride 
2. Finally, convolution is used to convert the 512 dimensions to 1 
dimension, with 3 × 3 kernels and stride 1. 

2.4. Loss function of AMGAN-CR 

We name the loss function of the proposed AMGAN-CR method 
L AMGAN− CR, and it is employed in the optimization of parameters in 
generative and discriminative networks. To reduce the gap between the 
generated clear image and the ground-truth image, L AMGAN− CR is 
formulated as: 

L AMGAN− CR = argmin
P
max
Q

θ1L cGAN(P,Q)+ θ2L Att + θ3L L1, (2)  

where L cGAN(P,Q) is the conditional GAN loss function, L Att is the 
attention loss, and L L1 is an improved L 1 loss function used to calculate 

the precision of each reconstructed pixel. θ1, θ2 and θ3 are the balance 
factors of these losses. Specifically, L cGAN(P,Q) is expressed as 

L cGAN(P,Q) = Eu,v∼pdata(u,v)[logQ(u, v) ]+Eu∼pdata(u),j∼pj(j)[log(1 − Q(u,P(u, j) ) ) ],
(3)  

where u represents the cloudy image, pdata(u) represents the distribution 
of u, v represents the real cloud-free image, j is denoted as random noise 
data, pj(j) is the noise distribution, P(u, j) refers to the cloud-free image 
generated by u with the aid of j, and Q(u,v) is the result of the 
discriminator, representing the possibility that v is close to the real clear 
image. 

The attention map produced by the attentive recurrent network is 
used to calculate the attention loss L Att: 

L Att = ‖A − M‖
2
, (4)  

where A ∈ ℝW×H is a matrix that represents the attention map and M ∈
ℝW×H is the so-called cloud mask. W and H represent the width and 
height of A and M, respectively. In Eq. (4), M is calculated by using the 
cloudy image to subtract the real clear image, and then an interval [0,1] 
is selected to clip the values smaller than 0 and larger than 1. Values 
outside the interval are clipped to the interval edges. Afterwards, a bi-
nary mask can be generated, which can be regarded as a so-called cloud 
mask. The values 1 and 0 in M represent cloudy and clear pixels, 
respectively. L Att optimizes the network by matching the attention map 
to the subtraction of cloudy and clear images. 

The third component of L AMGAN− CR is utilized to determine the ac-
curacy of each reconstructed pixel, which is denoted as: 

L L1 =
1

NWH
∑N

r=1

∑W

w=1

∑H

h=1
λr
⃦
⃦
⃦I(w,h,r)output − f

(
I(w,h,r)input

)⃦
⃦
⃦
1
, (5)  

where N represents the number of bands of the input cloudy image, W * 
H represents the size of the image, λr refers to the weight of the r-th band, 
Iinput is denoted as the input image of the generative network, the output 
result is Ioutput, f(Iinput) refers to the predicted image of the generative 
network, and (w,h, r) represents a pixel at location (w,h) in the r-th band. 

3. Data preprocessing and evaluation 

3.1. Landsat data preprocessing 

The Landsat project is continually collecting global land cover data, 
which provides us with suitable data to implement the experiments. 

Table 2 
Landsat 8 OLI bands.  

Band Band name Wavelength (μm) Resolution (m) 

1 Coastal Aerosol 0.43–0.45 30 
2 Blue 0.45–0.51 30 
3 Green 0.53–0.59 30 
4 Red 0.64–0.67 30 
5 Near Infrared 0.85–0.88 30 
6 SWIR1 1.57–1.65 30 
7 SWIR2 2.11–2.29 30 
8 Panchromatic 0.50–0.68 15 
9 Cirrus 1.36–1.38 30  

Table 3 
Summary of the study sites used in the simulated and real cloud datasets. The percentage of cloud over is acquired from the USGS website (https://earthexplorer.usgs. 
gov).  

Dataset Pair Condition ID Percentage of Acquisition Date 

Cloud Cover 

Simulated Dataset 1 Cloud Band LC08_L1TP_090084_20140421_20170423_01_T1 42.69% 2014/04/21 
Cloud-Free LC08_L1TP_090084_20140115_20170426_01_T1 0.28% 2014/01/15 

2 Cloud Band LC08_L1TP_091084_20191104_20191115_01_T1 37.96% 2019/11/04 
Cloud-Free LC08_L1TP_091084_20191019_20191029_01_T1 0.01% 2019/10/19 

Real Dataset 1 Cloudy LC08_L1TP_090084_20140507_20170422_01_T1 9.73% 2014/05/07 
Cloud-Free LC08_L1TP_090084_20140421_20170423_01_T1 42.69% 2014/04/21 

2 Cloudy LC08_L1TP_091084_20191104_20191115_01_T1 37.96% 2019/11/04 
Cloud-Free LC08_L1TP_091084_20191019_20191029_01_T1 0.01% 2019/10/19 

3 Cloudy LC08_L1TP_090084_20131230_20170427_01_T1 5.24% 2013/12/30 
Cloud-Free LC08_L1TP_090084_20140115_20170426_01_T1 0.28% 2014/01/15 

4 Cloudy LC08_L1TP_089084_20131020_20170429_01_T1 27.15% 2013/10/20 
Cloud-Free LC08_L1TP_089084_20130817_20170502_01_T1 0.03% 2013/08/17 

5 Cloudy LC08_L1TP_090085_20130824_20170502_01_T1 5.12% 2013/08/24 
Cloud-Free LC08_L1TP_090085_20131011_20170429_01_T1 0.10% 2013/10/11 

6 Cloudy LC08_L1TP_096072_20140126_20170426_01_T1 31.12% 2014/01/26 
Cloud-Free LC08_L1TP_096072_20140315_20170425_01_T1 1.63% 2014/03/15 

7 Cloudy LC08_L1TP_090084_20160715_20170323_01_T1 9.85% 2016/07/15 
Cloud-Free LC08_L1TP_090084_20160222_20170329_01_T1 0.02% 2016/02/22  
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Furthermore, Landsat time series satellite images are frequently utilized 
for land use and land cover change detection, which is generally 
necessary to remove cloud cover in the data preprocessing step. From 
the above considerations, Landsat 8 images were used in the experi-
ments. The OLI imagery has a spatial resolution of 30 m and comprises 
visible, near-infrared, and shortwave infrared spectral bands, as well as 
a 15 m panchromatic band. Table 2 shows the wavelengths of Landsat 8 
OLI bands used in the experiment. Band 9 is also called the cirrus band, 
which is a band centered at a wavelength of 1.375 μm in Landsat 8 OLI. 
It is a strong water vapor absorption band and helps detect cirrus clouds 
within OLI images. Band 9 is used to help synthesize the simulated 
cloudy images. We preprocess the images by converting the unsigned 

16-bit integers to 8-bits. The lower and higher end of 2% data values are 
saturated to 0 and 255, respectively, in order to present the informative 
data values better. The raw surface reflectance data can also be directly 
used in the experiments; nevertheless, a linear 2% stretch is better for 
visual color display. Finally, we normalize the pixels from 0 to 255 to the 
range of 0–1 to accelerate the convergence of the training network 
because normalization does not change the image information and is 
essential for reducing training times and improving training efficiency. 

3.2. Dataset preparation 

Because of the lack of ground truth in the real experiments, it is 
difficult to evaluate the results of cloud removal quantitatively. There-
fore, a simulated cloud dataset and a real cloud dataset are both used in 
the experiment. The simulated experiments more easily demonstrate the 
effectiveness quantitatively. We use the algorithms mentioned in Xu 

Fig. 5. Diagram of synthesizing a simulated cloudy image by Eq. (6). The simulated cloudy image is generated by a ground-truth image and a simulated cloud band. 
The thickness factor αi is set as 1. The entire Landsat scene is partitioned into a set of small 256×256 nonoverlapping patches and separated into simulated training 
and testing datasets. 

Table 4 
Training, validation and test datasets for the simulated cloud dataset and real 
cloud dataset.   

Images (256×256) 

Train 64% Validate 16% Test 20% 

Simulated cloud dataset 384 96 120 
Real cloud dataset 578 144 181  

Table 5 
Average PSNR, SSIM, RMSE values on the simulated testing dataset corre-
sponding to different θ1 values when θ2 = 10 and θ3 = 10.  

θ1 value 0.01 0.03 0.05 0.07 0.1 

PSNR 25.256 25.013 24.901 24.808 24.743 
SSIM 0.900 0.895 0.888 0.883 0.863 
RMSE 0.060 0.061 0.062 0.063 0.064  
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Fig. 6. (a) Plot of RMSE versus the number of epochs during training. (b) Plot 
of PSNR versus the number of epochs during training. 

M. Xu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 271 (2022) 112902

8

et al. (2015) to synthesize a simulated cloudy image. First, the cirrus 
band is converted into a cloud band by manually selecting a threshold 
value. Additionally, a cloud mask is produced by masking the nonzero 
values of the cloud band. Second, we add the cloud band onto the seven 
bands of a cloud-free image. The synthetic formula of the simulated 
cloud is as follows: 

Iti = Igi +αiscIc, (6)  

where Ic represents the cloud band, Ii
t represents the synthesized cloudy 

image, and Ii
g represents the clear image. i represents the number of 

bands, sc is the set of cloud spectra that can simulate real cloud effects on 
different bands, and αi is the coefficient that can control the thickness of 
cloud cover. The simulated dataset used in our experiment is presented 
in Table 3, containing two pairs of simulated images, and the simulation 
diagram is shown in the left part of Fig. 5, where αi is set as 1. 

The real cloud datasets consist of seven pairs of cloudy and cloudless 

Fig. 7. Experimental results on simulated data displayed in the composition of bands 2, 3, and 4. The first row shows six cloudy images with a size of 256×256 that 
are subsets of the two paired simulation images. The second to seventh rows show the cloud removal images generated by the Haze-Removal, CR-NAPCT, RSdehaze, 
Pix2pix, SpA-GAN and AMGAN-CR methods, respectively. The last row shows the corresponding ground-truth scenes. 
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multitemporal images, which are displayed in Table 3. All the study sites 
are located in Australia. The images with WRS Path/Row 90/85, 90/84, 
91/84 and 89/84 are around Canberra and Sydney in southeastern 
Australia. The image with WRS Path/Row 96/72 is collected near 
Mareeba in northeastern Australia. The acquisition dates range from 
2013 to 2019. The cloud-free images with less than 10% cloud cover are 
selected as the reference images on the nearest date from cloudy images. 
There is an exception that the first pair of real datasets contains a cloud- 
free image with 42.69% cloud cover. It also can be noticed that the 
cloud-free image in the first pair and the cloudy image in the second pair 
of the real dataset are also used in the simulated dataset. The reason is 
that the same image used in both experiments can be better to evaluate 
the results visually. Since each entire Landsat scene is partitioned into a 
set of small 256×256 nonoverlapping patches, which is shown in the 
right part of Fig. 5, we use only the images in the central square without 
the external images that are filled with dark areas, and the cloudy areas 
of the cloud-free image are excluded from our datasets. The reference 
images are treated as part of the training data in the proposed AMGAN- 
CR method for the purpose of learning the mapping from cloudy to 
cloudless images and the ground-truth images when evaluating the test 
results quantitatively and qualitatively. Furthermore, the cloudy and 
corresponding clear images are coregistered to ensure that the pixels are 
paired correctly. It is important to note that after cropping the original 
images, 903 patches in the real cloud dataset and 600 patches in the 
simulated cloud dataset are obtained. All the cropped patches are 
divided into three subsets: training, validation, and test datasets. Table 4 
shows the proportions of three datasets. 

3.3. Evaluation metrics 

We utilized three quantitative evaluation metrics to assess the 
quality of all experimental methods. The first metric is the peak signal- 
to-noise ratio (PSNR) that is the most frequently used objective 
measuring tool for evaluating image quality. It is given by: 

PSNR = 10⋅log10

((
2B − 1

)2

MSE

)

, (7)  

where B represents the bit depth. When an image is 8-bit data, 2B − 1 
will be 255. MSE is the mean squared error between the cloud removed 
image and the ground-truth image. Given a cloud-removed image Xre-

moved ∈ ℝx×y and the ground-truth image X̂ truth ∈ ℝx×y, MSE is calcu-
lated according to: 

MSE =
1
n
‖ Xremoved − X̂ truth‖

2, (8)  

where n = x × y denotes the number of pixels in the image. A larger 
PSNR value indicates a closer relationship between the cloud-removed 
image and the ground-truth image. 

Second, the structural similarity index measurement (SSIM) is a 
metric used to assess the similarity of two images and determine image 
quality with the concern of structural information deterioration. SSIM is 
defined as 

SSIM = l(p, q)⋅c(p, q)⋅s(p, q). (9) 

The calculation of SSIM is based on three comparison measures, 
namely luminance l, contrast c and structure s, between samples p and q: 
l(p, q) =

2μpμq+c1

μ2
p+μ2

q+c1
, c(p, q) =

2σpσq+c2
σ2

p+σ2
q+c2

, s(p, q) =
σpq+c3
σpσq+c3

. Among them, c1, c2, c3 

are constants. μp and μq are the mean values of p and q. σp
2 and σq

2 are 
the variances of p and q. σpq is the covariance of p and q. The range of 
SSIM is between 0 and 1. A larger SSIM value indicates a greater simi-
larity between the two images. When the two images are identical, SSIM 
is equal to 1. 

The third evaluation metric is the root-mean-square error (RMSE) 
between the ground-truth and corrected image: RMSE =

̅̅̅̅̅̅̅̅̅̅
MSE

√
. It is 

used in the simulation tests. 

4. Experiment 

To verify the proposed AMGAN-CR method, three traditional 
methods and two deep learning methods are executed as the baselines 
for comparison. The traditional methods include haze removal based on 
the deformed haze imaging model (Haze-Removal) (Pan et al., 2015), 
haze removal for a single visible remote sensing image (RSdehaze) (Liu 
et al., 2017) and cloud removal based on the noise-adjusted principal 
components transform model (CR-NAPCT) (Xu et al., 2019). These 
methods take only the cloudy image as the input without the require-
ment of corresponding cloud-free images. Specifically, Pan et al. (2015) 
proposed a haze imaging model that was used to remove haze from RGB 
color images: J(x) =

I(x)− R
t(x) + R. J represents the radiance, I is the target 

image, R denotes the global atmospheric light and t is the proportion of 
the light not reaching the camera. Since the atmospheric light of the 
three RGB channels was the same, R was estimated by calculating the 
highest pixel values in the image. J needs to be subtracted by a constant 
parameter C, which is used to decrease the deviation when utilizing the 
dark channel prior to estimating the transmittance. C is set to 27 in our 
comparative experiment. In Liu et al. (2017), haze is treated as additive 
contamination that can be represented by a haze thickness map (HTM). 
They first used the total variable regularization of the inpainting method 
to remove some textures and brighter parts and then used the average 
value as the upper boundary to suppress ground reflected radiance. Xu 
et al. (2019) took advantage of the property that a higher local spatial 
correlation corresponds to a higher the signal-to-noise ratio (S/N) value. 
Cloud detection was implemented first, and then clouds were removed 
by inversing the noise-adjusted principal component transform model. 
Cloud masks are necessary for the CR-NAPCT method in order to pre-
serve the cloud-free area information. Therefore, we obtain the cloud 
masks by the Fmask (Zhu et al., 2015) method, which detects clouds, 
cloud shadows, and snow for Landsats 4–8 and Sentinel 2 images. 

The two deep learning methods are a pix2pix GAN framework 
(Pix2pix) (Isola et al., 2017) and spatial attention generative adversarial 
networks (SpA-GAN) (Pan, 2020), which need paired cloudy images and 
cloudless images as the training datasets. Isola et al. (2017) learned the 
mapping and loss function from the input image to the output image. 
The optimizer for this method is Adam, with a learning rate of 0.0002, 
and number of epochs equals to 200. Pan (2020) used four spatial 
attentive blocks (SAB), and each SAB had three spatial attentive residual 

Table 6 
Average PSNR, SSIM and RMSE values calculated for the scenes in Fig. 7. The 
best performance in each evaluation metric is marked in bold. RGB denotes the 
measurement on all three bands.  

Metric Method Band 2 Band 3 Band 4 RGB 

PSNR Haze-Removal 17.04 10.35 9.62 11.20  
CR-NAPCT 10.97 11.11 10.81 10.80  
RSdehaze 15.49 15.48 14.65 14.65  
Pix2pix 25.97 22.94 21.84 23.11  
SpA-GAN 26.26 24.12 21.31 23.33  
AMGAN-CR 28.35 24.20 24.53 25.11  

SSIM Haze-Removal 0.67 0.56 0.54 0.59  
CR-NAPCT 0.50 0.56 0.56 0.54  
RSdehaze 0.56 0.61 0.65 0.61  
Pix2pix 0.85 0.84 0.81 0.83  
SpA-GAN 0.86 0.87 0.84 0.85  
AMGAN-CR 0.91 0.90 0.89 0.90  

RMSE Haze-Removal 0.15 0.32 0.35 0.29  
CR-NAPCT 0.29 0.28 0.29 0.29  
RSdehaze 0.20 0.19 0.20 0.20  
Pix2pix 0.05 0.08 0.10 0.08  
SpA-GAN 0.05 0.07 0.10 0.08  
AMGAN-CR 0.04 0.07 0.07 0.06  
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blocks (SARB) and one spatial attentive module (SAM), as was originally 
proposed in Wang et al. (2019). For the network used for extracting the 
attention map, in Pan (2020), a two-round four-directional identity 
matrix initialization architecture was used to obtain the features in the 
four directions and then the weights in the four directions were multi-
plied to concatenate the results. Finally, the attention map is output 
through additional convolutions and sigmoid activations and then used 
the residual network to subtract the attention map from the cloud image 

to obtain a cloud-free image. The optimizer of SpA-GAN is Adam, with a 
learning rate of 0.0004, number of epochs equals to 200, and minibatch 
equal to 1. In contrast, it is worth noting that in our method the attentive 
recurrent network with several blocks in which the features are 
extracted through five residual networks to obtain the attention map. 
This bottleneck structure can improve the speed of calculation. First, 
convolutions and ReLUs are used to perform a regular feature extraction 
on the cloudy image. However, the performance of a single residual 

Fig. 8. Experimental results on real data displayed in the composition of bands 2, 3, and 4. The first row shows the six cloudy images. The second to seventh rows 
show the cloud removal images generated by the Haze-Removal, CR-NAPCT, RSdehaze, Pix2pix, SpA-GAN and AMGAN-CR methods, respectively. The last row 
shows the corresponding reference images with no cloud cover. 
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block for feature extraction was found to be insufficient, so we use five 
residual blocks. Then, LSTM is used to process the non-linear structure of 
the image and retain valuable information. Finally, a two-dimensional 
attention map is obtained through convolutions. Furthermore, we also 
reduced the number of network layers to further improve the perfor-
mance as seen from the experimental results. 

Three parameters θ1, θ2 and θ3 are the weighting factors, aiming to 
make three individual losses contribute equally to the total loss mini-
mization L AMGAN− CR in AMGAN-CR. According to Isola et al. (2017), the 
quality of images achieves the best when θ1 = 0.01, θ2 = 0, and θ3 = 10 
in our case. Therefore, we set θ1 = 0.01 and θ3 = 10 as the recommended 
and typical selection in most of the well-known studies. The attention 
loss L Att is used to calculate the difference between the attention map 
and the cloud mask. The influence of L Att and L 1 are expected equal. 
Based on the definition of these two losses, they are both used to 
minimize the distances between outputs and ground truth inputs. 
Therefore, θ2 is set to 10. For the purpose of examining the effects of 
different values of these parameters to the results, we keep θ2 = 10 and 
θ3 = 10 unchanged and θ1 is set to 0.01, 0.03, 0.05, 0.07, and 0.1. 
Table 5 shows the average PSNR, SSIM and RMSE values with different 
values of θ1 on the simulated testing dataset. It can be seen that changing 
the values of θ1 from 0.01 to 0.1 reduces slightly the performance of 
AMGAN-CR and all metrics have the best result when θ1 = 0.01. Thus, 
we set θ1 = 0.01, θ2 = 10, and θ3 = 10 in our experiment. 

The training epoch is set as 200. It can be seen from Fig. 6, when the 
number of epochs reaches 200, the values of RMSE and PSNR tend to 
stabilize. Therefore, we set training epoch to 200 as the effective number 
to achieve the desired performance. The number of epochs is an 
important hyperparameter that indicates the number of complete cycles 
for the whole training dataset to learn the process of the algorithm. The 
internal model parameters of the dataset are updated per epoch. Our 
training and testing experiments are executed on a Windows 10 oper-
ating system with an Intel(R) Core(R) i5-4590 CPU @ 3.30 GHz and an 
NVIDIA Tesla P100 PCIe with 16 GB RAM using the PyTorch framework. 
Since all the baseline methods except for CR-NAPCT are developed for 
natural images, we select only bands 2, 3, and 4 of the Landsat images to 
implement all the comparative analyses. It should be noticed that the 
presented AMGAN-CR method is developed with seven bands of cloudy 
images. The dataset given in Section 3 is used to train all algorithms. We 
also conduct an ablation study to investigate the influence of K used in 
the attentive recurrent network, which is described in Section 2.2.1, the 
influence of N in Eq. (5), which is the number of bands in the input 
cloudy image, and the influence of the so-called cloud mask M in Eq. (4) 
on the performance of AMGAN-CR. 

4.1. Experimental results on the simulated datasets 

Fig. 7 presents the outcomes of several approaches on six cloudy 
image in RGB color utilizing bands 2, 3, and 4. The first row shows the 
simulated cloudy images synthesized by the method mentioned in 

Table 7 
Average PSNR and SSIM values calculated for the scenes in Fig. 8. The best 
performance in each evaluation metric is marked in bold. RGB denotes the 
measurement on all three bands.  

Metric Method Band 2 Band 3 Band 4 RGB 

PSNR Haze-Removal 12.90 12.29 11.58 12.18  
CR-NAPCT 12.32 13.45 14.39 12.49  
RSdehaze 12.18 13.76 12.18 12.58  
Pix2pix 16.16 16.05 12.91 14.58  
SpA-GAN 19.05 18.47 16.24 17.65  
AMGAN-CR 19.80 18.99 17.70 18.63  

SSIM Haze-Removal 0.46 0.44 0.35 0.42  
CR-NAPCT 0.45 0.50 0.56 0.51  
RSdehaze 0.41 0.52 0.50 0.47  
Pix2pix 0.68 0.66 0.56 0.63  
SpA-GAN 0.78 0.75 0.69 0.74  
AMGAN-CR 0.82 0.81 0.77 0.80  

Table 8 
The performance of each band in the real cloud dataset.   

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

PSNR 16.03 19.80 18.99 17.70 17.32 17.24 16.68 
SSIM 0.72 0.82 0.82 0.77 0.79 0.78 0.66  

Fig. 9. Columns (b)-(h) display each band of our cloud removal results corresponding to Table 8. The second row is the magnified view of the red box in the first row, 
and the first and last columns are the cloudy and cloud-free reference images, respectively. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Section 3, and the last row shows the ground-truth images correspond-
ing to the simulated cloudy images. The six cloudy images are covered 
by representative ground surfaces and clouds of different shapes and 
thicknesses. The first three cloudy scenes all include water areas, which 
are always ignored by cloud removal algorithms. It can be seen from 
Fig. 7 that the three traditional methods, which are Haze-Removal, CR- 
NAPCT and RSdehaze, did not work well in removing simulated clouds. 
The Haze-Removal method has a better result in Fig. 7(f2) than the other 
two traditional methods. Due to the particular shape of cloud cover over 

water areas in Fig. 7(a1), the three methods are not able to remove 
clouds effectively. This common problem occurred only with traditional 
methods, which may be because of the different distributions of simu-
lated clouds and real clouds. The results of the deep learning methods, 
which are Pix2pix, SpA-GAN and the proposed AMGAN-CR, are all 
visually better for the cloudy images than those of the above three 
methods. Similarly, Fig. 7(a5)-(a7) present the boundaries after cloud 
removal, but in Fig. 7(b7) and (c7), the clouds are completely removed, 
without the blurred areas that exist in Fig. 7(b5), (c5) and (b6), (c6). The 
results of Fig. 7(d1), (e1), and (f1) processed by our method outperform 
those of Pix2pix and SpA-GAN when compared with the ground-truth 
image visually. 

To make a quantitative comparison, the average values of PSNR, 
SSIM and RMSE calculated on bands 2, 3, 4 and RGB are listed in 
Table 6. The best results in each assessment metric are marked in bold. It 
is clearly seen that the proposed AMGAN-CR achieved the best results 
among all six methods, which are consistent in the visual display. Spe-
cifically, the values of PSNR, SSIM and RMSE on band 2 are better than 
those of other bands for almost all the methods owing to the greater 
effects of clouds on shortwave bands than longwave bands. 

4.2. Experimental results on real datasets 

Fig. 8 shows the outcomes of several approaches on six cloudy 

Fig. 11. An example image produced with K = 1 to K = 5 in the attentive recurrent network. The second row is an enlarged version of the red box in the first row, 
and the first and last columns are the cloudy and cloud-free reference images, respectively. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Table 9 
Average PSNR and SSIM values calculated with different K on the real datasets.  

Metric K Band 2 Band 3 Band 4 RGB 

PSNR K=1 18.394 18.622 18.037 18.292  
K=2 18.438 18.839 18.290 18.448  
K=3 18.685 18.869 18.311 18.555  
K=4 18.713 18.942 18.434 18.633  
K=5 18.678 18.983 18.282 18.565  

SSIM K=1 0.710 0.723 0.693 0.709  
K=2 0.709 0.723 0.693 0.709  
K=3 0.711 0.722 0.695 0.709  
K=4 0.713 0.725 0.698 0.712  
K=5 0.710 0.723 0.689 0.707  

Fig. 12. An example image produced with N = 3 to N = 7 from the cloudy image. The second row is an enlarged version of the red box in the first row, and the first 
and last columns are the cloudy and cloud-free reference images, respectively. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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images in natural color. The reference images without cloud cover are 
collected on near date to the cloudy images. Fig. 8(a1) and (e1) are 
covered by relatively thicker clouds than the others, and (e1) has an 
obvious strip of clouds. The Haze-Removal and RSdehaze methods do 
not correct the cloudy images effectively, with some clouds retained. 
CR-NAPCT can remove clouds from most of the scenes, while over-
correction clearly occurs in the last three images, especially in the image 
with large water areas. SpA-GAN performs nearly as well as AMGAN-CR, 
the results of which are visually better than those of Pix2pix. However, 
the boundaries after correction in Fig. 8(e6) are more remarkable than 
those in (e7). Although the results of AMGAN-CR still present some 
blurred areas in the removal image, the overall performance is the best 
visually. The average values of PSNR and SSIM are provided in Table 7 
for a quantitative comparison. The best results in each assessment metric 
are marked in bold, and it is shown that the proposed method produces 
the best result. We use seven bands of the Landsat 8 images in the ex-
periments. Bands 2, 3, and 4 (RGB) are selected for visual inspection in 
qualitative evaluation and fair quantitative comparison with other 
methods. To present the performance comprehensively, we add the re-
sults of all bands in Table 8. In addition, we use Fig. 9 to show the 
intuitive visual effects of each band. As an example we can see that the 
texture is clearer and more complete after the correction in Band 2. 

It is noteworthy that the proposed method requires about three hours 
for model training. Fig. 6 shows that it takes about 200 epochs until 
training convergence. While training requires a lot of computation time, 
our method is more effective than several other cloud removal methods 
in using the model to conduct cloud removal. Fig. 10 shows the average 
running time and PSNR of six methods over the tests on the 10 real 
cloudy images. Since Haze-Removal and RSdehaze are based on the 
Haze Imaging Model, and CR-NAPCT is based on the noise-adjusted 
principal components transform model, complex optimizations are still 
required to remove clouds of each new image, resulting in slower pro-
cessing time. Among the three deep learning methods, Pix2pix is pro-
cessed pixel by pixel so that the processing time is longer. Both our 
method and SpA-GAN are faster due to the direct application of the 
trained models. Although SpA-GAN takes a little shorten running time 
than AMGAN-CR, its PSNR is lower. As a result, our method has a good 

trade-off between computational costs and accuracy. 

4.3. Ablation experiment 

4.3.1. Influence of K in the attentive recurrent network 
To show the impact of K (the total number of blocks in the attentive 

recurrent network), we performed five experiments, and Fig. 11 shows 
an example image produced with K = 1 to K = 5. The first and last 
columns are the cloudy and cloud-free reference images. The results 
with varied values of K are shown in the second to sixth columns. The 
second row is the magnified view of the red box in the first row. As seen 
from the figure, the image texture becomes clearer and sharper from left 
to right, and the results of the K numbers of 4 and 5 are visually the 
same. To reduce the time consumption, we adopt K = 4 in the attentive 
recurrent network of the proposed AMGAN-CR in the experiment. The 
average PSNR and SSIM values calculated with different K are listed in 
Table 9. When K = 4, the model has the highest PSNR value except for 
band 3, where its value is very close to the highest one, and the SSIM 
values are the maximum as well. 

4.3.2. Influence of the number of bands N 
We select five values of N for the cloudy image with K=4 in the 

attentive recurrent network to comprehend the impact of the number of 
bands: N=3 stands for using bands 2–4, N=4 stands for using bands 1–4, 
N=5 stands for using bands 1–5, N=6 stands for using bands 1–6 and 
N=7 stands for using bands 1–7. Fig. 12 shows an example image pro-
duced with N=3 to N=7 from the cloudy image. The second row is the 
magnified view of the red box in the first row, and the first and last 
columns are the cloudy and cloud-free reference images, respectively. It 
can be observed from the second row of the figure that when N=7, the 
image texture is closest to the cloudless reference image. The average 
PSNR and SSIM values calculated with different numbers of bands on the 
real datasets are shown in Table 10. We can easily see that when N=7, 
the model obtains the highest PSNR and SSIM values except for band 2. 
Using more bands are generally better, but not exactly. It should be 
noted that the PSNR values of N = 4 and N = 6 are slightly lower than the 
PSNRs of N = 3 and N = 5, respectively. Similarly, SSIM values reveal 
the same situation. It is important to learn using all the bands, N = 7, is 
necessary and they provides the best performance. 

4.3.3. Influence of M on attention loss L Att 
Two cases are analyzed to determine the influence of M on the 

attention loss L Att for the performance of the AMGAN-CR method. Case 
1 (Subtraction): In our experiment, M is required, by using the cloudy 
image, to subtract the ground-truth image in the simulation test or the 
cloud-free reference image and then to clip into a binary map containing 
values that are either 0 or 1. Therefore, M is a so-called cloud mask 
because it is not technically acquired by masking clouds. Case 2 
(Detection): The second case of obtaining M is by exploiting a cloud 
detection method to calculate a real cloud mask. In our ablation 
experiment, we choose the Fmask (Zhu et al., 2015) algorithm for 
comparison. Specifically, a real cloud mask is generated by Fmask in the 
preprocessing step, and we assign M as the result, which is a binary map 
as well. To compare the two cases, the average PSNR, SSIM and RMSE 
values calculated on the simulated datasets are shown in Table 11. The 
table shows that the result of calculating M by subtraction is better than 
the result by detection. However, different cloud detection methods can 
lead to different cloud removal results. In our experiment, only the 
Fmask method is considered thanks to its open-source code developed in 
various programming languages. 

5. Discussion 

It should be noted that collection of training and testing datasets is 
time-consuming and difficult which is the primary issue for the appli-
cation of deep learning models in remote sensing field. The cloudy and 

Table 10 
Average PSNR and SSIM values calculated with different numbers of bands N on 
the real datasets.  

Metric N Band 2 Band 3 Band 4 RGB 

PSNR N=3 24.643 23.118 21.079 22.616  
N=4 24.261 22.379 20.780 22.137  
N=5 27.965 25.620 24.128 25.542  
N=6 27.731 25.250 23.807 25.232  
N=7 27.869 25.867 24.297 25.642  

SSIM N=3 0.875 0.860 0.823 0.853  
N=4 0.860 0.845 0.814 0.840  
N=5 0.924 0.903 0.879 0.902  
N=6 0.922 0.896 0.869 0.895  
N=7 0.925 0.908 0.879 0.904  

Table 11 
Average PSNR, SSIM and RMSE values calculated on the simulated datasets with 
different methods of calculating M in L Att. The algorithm used in detection is the 
Fmask zhu2015improvement cloud detection method.  

Metric Method of calculating M Band 2 Band 3 Band 4 RGB 

PSNR Detection 27.229 24.982 23.383 24.790  
Subtraction 28.368 25.461 23.631 25.314  

SSIM Detection 0.924 0.901 0.872 0.899  
Subtraction 0.933 0.904 0.873 0.903  

RMSE Detection 0.049 0.063 0.076 0.064  
Subtraction 0.042 0.058 0.072 0.059  

M. Xu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 271 (2022) 112902

14

clear images were paired by selecting the Landsat images with shortest 
time interval from the same location. Therefore, geometric registration 
is an important step in this case. Moreover, when dealing with data from 
different seasons or with longer intervals, the land cover changes be-
tween cloudy and reference images may bring negative influence on the 
training phase. It should keep in mind that”garbage in equals garbage 
out”. The quality of the training image pairs is important, and a large 
quantity is expected to employ to reduce the effect of the poor samples. 
With the fast development of remote sensing missions, more image data 
will be collected and archived, which will ease the problem and improve 
the training image availability. 

Furthermore, we converted the unsigned 16-bit integers to 0–255 by 
applying a linear 2% stretch on the original reflectance values, which is 
convenient for displaying the images before and after correction. 
Normalization is not a necessary step in the removal process. In the 
ablation experiment, although we compared the influence of mask M on 
the attention loss L Att and observed that the use of a cloud mask ach-
ieved by the Fmask method cannot improve the accuracy of cloud 
removal, we could not conclude that the subtraction method must be 
better than the detection method because we did not implement other 
cloud detection methods. 

Although the experiments were carried out on Landsat 8 images only, 
the proposed method for cloud removal is not sensor dependent. The 
proposed method is based on generative adversarial networks (GANs) 
that learn the features of paired cloudy and cloud-free images and cor-
rect the target cloudy image using the trained model. The model is 
trained using the training samples from a particular sensor, then it works 
better for the data from that sensor. The training and testing images 
generally have the same spatial resolutions. The performance of the 
proposed method is affected by the configurations of the model and the 
training images. We can expect the trained model works for newly 
launched Landsat 9's OLI-2 images due to their similar imaging char-
acteristics. Other types of satellite data can also be effectively handled as 
long as the training is conducted with the relevant training samples. It is 
possible to apply the AMGAN-CR method to other optical sensors (such 
as MODIS, Sentinel, and Gaofen) by retraining the parameters of the 
model. If training images have different spatial resolutions, the model 
should work for new images of different resolution. The proposed 
method may not work well but should be investigated further. The 
limitation of the proposed AMGAN-CR is that undercorrection may 
occur when the cloudy image is covered with thick clouds. Therefore, it 
is advised to separate the image areas covered with thick clouds and 
conduct the correction using data replacement techniques. 

6. Conclusion 

In this paper, we developed attention mechanism-based generative 
adversarial networks for cloud removal (AMGAN-CR) in Landsat 8 im-
ages. Based on the results of the study, the following is a summary of the 
conclusions: (i) The AMGAN-CR method is able to take cloudy images as 
input and provide cloudfree output images, which is crucial in the 
preprocessing of remote sensing images due to the severe effects of 
clouds all year round. (ii) The attention map produced by the attentive 
recurrent network of the generator is able to detect the distribution of 
cloud cover in the input cloudy image. (iii) Both simulated and real 
cloudy datasets were exploited to verify the usefulness of AMGAN-CR, 
and the results of the experiments show that the images reconstructed 
by AMGAN-CR were superior to those of five other traditional and 
current deep learning based cloud removal methods quantitatively and 
qualitatively. AMGAN-CR has many advantages. It can extract the 
spatial-spectral characteristics of clouds by taking advantage of deep 
learning. In contrast to the traditional model-based methods, it can learn 
the relationship between cloudy and clear images by fully exploiting the 
features at image level rather than examining each pixel separately. 
There is no need to acquire a cloud detection mask separately; instead, 
spatial attention maps are generated indicating which target areas the 

network should focus on. In the future, we will work on building a cloud 
annotation database and paired cloudy and cloud-free image databases 
that can be used for deep model training and validation. So the proposed 
algorithm can be tested on larger regions with heterogeneous land 
surfaces during different seasons. Development of lightweight models to 
enhance the effectiveness of parameter training is also a valuable future 
research direction. 
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