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A B S T R A C T

Fusing hyperspectral images (HSIs) and multispectral images (MSIs) is an economic and feasible way to
obtain images with both high spectral resolution and spatial resolution. Due to the limited receptive field
of convolution kernels, fusion methods based on convolutional neural networks (CNNs) fail to take advantage
of the global relationship in a feature map. In this paper, to exploit the powerful capability of Transformer
to extract global information from the whole feature map for fusion, we propose a novel Multiscale Spatial–
spectral Transformer Network (MSST-Net). The proposed network is a two-branch network that integrates the
self-attention mechanism of the Transformer to extract spectral features from HSI and spatial features from
MSI, respectively. Before feature extraction, cross-modality concatenations are performed to achieve cross-
modality information interaction between the two branches. Then, we propose a spectral Transformer (SpeT) to
extract spectral features and introduce multiscale band/patch embeddings to obtain multiscale features through
SpeTs and spatial Transformers (SpaTs). To further improve the network’s performance and generalization, we
proposed a self-supervised pre-training strategy, in which a masked bands autoencoder (MBAE) and a masked
patches autoencoder (MPAE) are specially designed for self-supervised pre-training of the SpeTs and SpaTs.
Extensive experiments on simulated and real datasets illustrate that the proposed network can achieve better
performance when compared to other state-of-the-art fusion methods. The code of MSST-Net will be available
at http://www.jiasen.tech/papers/ for the sake of reproducibility.
. Introduction

Hyperspectral image (HSI) contains hundreds of continuous narrow
pectral bands from visible wavelengths to near-infrared wavelengths,
hich greatly benefits the precise identification of the composed ma-

erials of the ground objects [1]. In view of their capability to ac-
urately characterize the attribute information of objects, HSIs play
n important role in a wide range of tasks including dynamic moni-
oring of the environment [2], land cover classification [3], precision
griculture [4], and anomaly detection [5].

However, the high spectral resolution of HSIs generally comes with
compromise of its spatial resolution due to the limitations of the

maging platform. Since the bandwidth of the electromagnetic wave
cattered into the instantaneous field of view is narrow, the spatial
esolution of HSIs has to be lower to increase the signal-to-noise ratio.
he low spatial resolution of HSIs hinders the potential applications of
SIs in many areas [6]. Normally, low-resolution hyperspectral images

LR-HSIs) and high-resolution multispectral images (HR-MSIs) can be
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acquired with different sensors, respectively. Therefore, obtaining high-
resolution hyperspectral images (HR-HSIs) at the algorithmic level is a
necessary and promising research direction [7].

Generally, the observed LR-HSI and HR-MSI can be viewed as the
spatial and spectral degradation versions of an underlying HR-HSI,
respectively. Thus, the underlying HR-HSI can be reconstructed using
the observed images. There are approximately two ways to reconstruct
the underlying HR-HSI, i.e., single LR-HSI super-resolution and fusion
of LR-HSI with HR-MSI or panchromatic images. Since image recon-
struction is an ill-posed problem, it is very tricky to restore HR-HSI
from only a single LR-HSI. The reconstruction could be easier and more
meaningful with the introduction of HR-MSI or panchromatic images as
an auxiliary help. Therefore, it has become a popular research field to
develop high-performance algorithms to effectively fuse the spatial and
spectral information from HR-MSI and LR-HSI, respectively, to achieve
complementary feature fusion, and improve the spatial and spectral
resolution of the images.
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Many machine learning based methods have been proposed to fuse
LR-HSI and HR-MSI, such as matrix factorization based methods [8–
10] and tensor factorization based methods [11,12]. Most of them
rely on hand-crafted priors, which are time-consuming with limited
representation ability. With the rapid development of deep learning,
methods based on convolutional neural networks (CNNs) show impres-
sive performance in the fusion of LR-HSI and HR-MSI. Considering
the different characteristics of LR-HSI and HR-MSI, Shen et al. [13]
formulated the fusion problem into a spectral optimization problem
and a spatial optimization problem by using matrix decomposition.
In order to solve the difficult problem of cross-modality information
fusion, Zhang et al. [14] proposed a straightforward physical model,
which includes a spatial edge loss and a spectral edge loss for the
spatial and spectral restorations. The impressive performance of CNN
based fusion methods boils down to the powerful inferential capability
of CNNs. However, the small receptive field of CNNs makes them fail
to capture global features effectively, which, to a certain extent, limits
the fusion performance of CNN-based methods.

The strong ability to capture long-distance dependencies makes
Transformer an appropriate method to extract global features from im-
ages [15], which has been proved in many Transformer-based methods,
such as Vision Transformer (ViT) [16]. Since MSI contains rich spatial
details and HSI has a high correlation in spectral dimension, it will
be promising to design a Transformer-based network to excavate these
features to reconstruct the HR-HSI. However, ViT divides the image into
patches with a fixed spatial size and uses the patches as tokens to calcu-
late self-attention to reduce high computational complexity, which not
only limits its ability to characterize spatial features at different scales
but also limits its ability to extract spectral features of hyperspectral
images. In addition, ViT lacks certain desirable properties inherently
built into the CNN architecture that make CNNs uniquely suited to solve
vision tasks, e.g., locality and translation invariance. Thus, the training
of the Transformer usually requires much more training data to obtain
a competitive result. Motivated by the reasons above, we propose a
novel Multiscale Spatial–spectral Transformer Network (MSST-Net) for
MSI and HSI fusion. The proposed network is a two-branch network
that integrates the self-attention mechanism of the Transformer to
extract spectral features of HSI and spatial features of MSI, respectively.
Moreover, to address the problem that the Transformer is difficult to
train on a small dataset, we proposed a self-supervised pre-training
strategy based on the idea of masked autoencoders (MAE) [17]. The
main contributions of this paper are described in detail as follows:

1. We propose a Multiscale Spatial–spectral Transformer Network
(MSST-Net) for hyperspectral and multispectral image fusion.
The MSST-Net extracts deep spectral and spatial features us-
ing multiscale spectral Transformers (SpeTs) and spatial Trans-
formers (SpaTs), respectively, and then combines the extracted
multiscale spectral and spatial features with shallow features,
using a long skip connection, to reconstruct HR-HSI. Before
feature extraction, cross-modality concatenations are performed
to achieve cross-modality information interaction between the
two branches.

2. The spectral Transformer is proposed to better capture spectral
features from HSIs. In the spectral Transformer, spectral multi-
head self-attention is designed to effectively obtain spectral fea-
tures from HSIs by calculating the self-attention in the spectral
domain and dividing the multi-head in the spatial domain.

3. To overcome the limitation of the Transformer on extracting
detailed information, we introduce multiscale band/patch em-
beddings to extract multiscale spectral/spatial features from the
observed images. The final features are then obtained by fusing
the multiscale features using learnable weights, which enhance
118

the abundance of the extracted features.
4. We propose a self-supervised pre-training strategy, in which
a masked bands autoencoder (MBAE) and a masked patches
autoencoder (MPAE) are specially designed for self-supervised
pre-training of the SpeTs and SpaTs. The pre-trained SpeTs and
SpaTs are then loaded into the proposed network for end-to-end
fine-tuning to improve the performance and generalization of the
network.

The remainder of this article is organized as follows. Section 2 gives
the related works of representative MSI and HSI fusion methods and
the applications of Transformers in hyperspectral images. In Section 3,
we describe the proposed MSST-Net in detail. The experimental results
on four datasets are presented and analyzed in Section 4. Finally, we
provide a conclusion in Section 5.

2. Related work

In this section, we first introduce some existing representative MSI
and HSI fusion methods. Then, we provide an overview of the applica-
tions of Transformers in hyperspectral images.

2.1. Hyperspectral and multispectral image fusion

The existing HSI and MSI fusion methods can be approximately
divided into matrix factorization based methods, tensor factorization
based methods, deep learning based methods, and pan-sharpening
methods extended for the fusion of HSIs and MSIs. Matrix factorization
based methods fuse the images by decomposing the target HR-HSI
into several matrices. Based on the estimation method of the spec-
tral basis and coefficients, matrix factorization based methods can
be mainly divided into three classes [18]. The first class obtains the
spectral basis and the coefficients only from the observed HSI and the
observed MSI, respectively. For example, Kawakami et al. [19] first
proposed the sparse matrix factorization (SMF) method, in which the
spectral dictionary was estimated with the sparse dictionary learning
method, and the sparse coefficients were obtained by sparse coding
algorithm. Akhtar et al. [20] learned the spectral dictionary from the
LR-HSI and estimated the coefficients from the high-resolution MSI by
Bayesian sparse coding. The second class firstly estimates the spectral
basis from the observed HSI, and then calculates coefficients from both
two images, such as [21–23]. To reduce computation time, Wei et al.
[8] proposed a fast multiband image fusion algorithm (FUSE) by solving
a Sylvester equation. The third class formulates the fusion task based on
the coupled matrix decomposition and then alternatively updates the
spectral basis and coefficients, rather than using the fixed dictionary.
For example, Yokoya et al. [24] used a coupled nonnegative matrix
factorization (CNMF) to solve the fusion problem of spectral unmix-
ing. Lanaras et al. [25] obtained spectral basis and coefficients via
the proximal alternating linearized minimization by imposing several
priors on spectral unmixing.

Tensor factorization-based methods are a kind of method that treat
the images as a tensor to preserve the spatial and spectral structure of
the images rather than reshaping them into matrices. Tucker decom-
position and Canonical polyadic (CP) decomposition are two widely
used decompositions used in the fusion of HSIs and MSIs. Li et al. [11]
proposed a coupled sparse Tucker decomposition (CSTF) scheme for
HSI-MSI fusion, which estimates the core tensor and dictionary of each
mode via proximal alternating optimization. Dian et al. [26] proposed
a nonlocal sparse tensor factorization approach (NLSTF_SMBF) for the
fusion of HSI and MSI in a semi-blind manner. Prévost et al. [27] made
use of the truncated SVD to obtain the dictionaries of three modes to
reduce the computational burden. Kanatsoulis et al. [28] factored the
HR-HSI using CP decomposition and estimate each factor matrice via
solving the least squares equation. Xu et al. [29] further proposed a
non-local CP decomposition for HSI-MSI fusion. In addition to Tucker

decomposition and CP decomposition, many other TR methods have
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Fig. 1. The overall architecture diagram of our proposed multiscale spatial–spectral Transformer network.
also been actively studied, such as low tensor-train rank regularized
HSI-MSI fusion (LTTR) [30], and coupled tensor ring factorization
(CTRF) method [31].

However, most traditional methods are based on the modeling of
image priors, which is usually sensitive to parameter selection. With
the development of deep learning, people realize that all the parameters
can be learned from training data via deep learning networks without
imposing any assumptions on the images [32]. Therefore, Dian et al.
[33] proposed a deep HSI sharpening method (DHSIS) for the fusion of
hyperspectral and multispectral images, which directly learns the image
priors via a deep residual network instead of using hand-crafted image
priors. In addition, Palsson et al. [34] noticed the importance of HSI
in the spectral dimension and proposed a method by training a 3-D
CNN for learning filters used to fuse the MSI and HSI. Furthermore,
to reduce the computational complexity of the 3-D CNN, they used
principal component analysis (PCA) [35] for dimensionality reduction
before fusing. Zheng et al. [36] proposed an edge-conditioned feature
transform network (EC-FTN) to maintain low-level structure informa-
tion such as sharp edges. However, most learning based methods are
supervised. Thus they need an extensive training set, which is not easy
to obtain in real life. So Qu et al. [37] proposed an unsupervised sparse
Dirichlet-Net (uSDN), which uses an unsupervised encoder–decoder
architecture to extract the spatial information and spectral information
of two modalities with different dimensions. Since the priors of high-
dimensional HSIs can be highly complicated and the degeneration is
often unknown, Zhang et al. [38] proposed a semi-supervised network.
They pre-trained the fusion module in a supervised manner and learned
the adaptation module in an unsupervised manner. Liu et al. [39]
designed a model-inspired deep network for HSI super-resolution in
an unsupervised manner and an additional unsupervised network to
estimate the point spread function and spectral response function.

Over the past two decades, component substitution based meth-
ods [40], multiresolution analysis based methods [41], and sparse
representation based methods [42] have been developed to enhance the
spatial resolution of multispectral images. These pansharpening meth-
ods can be generalized to fuse HSIs and MSIs after some modifications.
For example, assigning to each hyperspectral band, whose enhance-
ment is separately performed, a single channel of the multispectral
data [43], or dividing the spectrum of hyperspectral data into several
regions and fusing hyperspectral and multispectral images in each
region using conventional pan-sharpening techniques. Recently, Selva
et al. [44] proposed a framework, called hypersharpening, that utilizes
119
a weighted combination of all the multispectral bands for the spatial
improvement of each hyperspectral band, achieving significantly better
fusion results than simply selecting a band from multispectral images.

2.2. Applications of transformer in hyperspectral images

Although various CNN-based fusion methods have been derived to
fuse hyperspectral and multispectral images, the limited receptive field
of CNNs implies that they are not good at extracting global information
from the image. However, since HSI is highly correlated in spectral
dimension, obtaining global features of the spectra is crucial for im-
proving the fusion performance. Since 2020, thanks to the self-attention
mechanism to obtain long-range information, Transformer has begun to
shine in the CV field: image classification (ViT) [16], target detection
(DETR) [45], semantic segmentation (SETR) [46], image generation
(GANsformer) [47], etc. In the field of HSI processing, Transformer
has proved its advantages in processing sequential data. For exam-
ple, Hong et al. [48] proposed a backbone network (SpectralFormer)
for HSI classification, which is capable of learning spectrally local
sequence information from neighboring bands of HSIs, yielding group-
wise spectral embeddings. He et al. [49] proposed a spatial–spectral
Transformer (SST) classification network, which used a well-designed
CNN to extract the spatial features, and a modified Transformer to
capture sequential spectra relationships. Selen and Esra [50] proposed a
spectral-swin transformer (SpectralSWIN) classification network which
makes use of a swin-spectral module to process the spatial and spectral
features concurrently. Transformers have also been gradually applied in
the field of HSI reconstruction. For example, Cai et al. [51] proposed
the first Transformer-based HSI reconstruction method, which uses the
feature map of each spectral channel as a token to calculate self-
attention. Bandara and Patel [52] used the self-attention mechanism of
the Transformer to transfer high-resolution textural to low-resolution
features for pan-sharpening. Wang et al. [53] proposed a convolution
and contextual Transformer (CCoT) block to simultaneously utilize
the inductive bias ability of convolution and the powerful modeling
ability of Transformers to restore the reconstruction details. Recently,
a novel Transformer-based fusion network, namely Fusformer [54],
was proposed to reconstruct HR-HSI from an LR-HSI and an HR-MSI,
achieving state-of-the-art fusion performance.
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3. Multiscale Spatial–spectral Transformer

3.1. The network architecture

Our network is a two-branch structure with two shallow feature ex-
traction modules, two kinds of deep feature extraction modules, and an
image reconstruction module. The overall architecture of our proposed
model is shown in Fig. 1(a). The shallow feature extraction module
contains a convolution layer to extract shallow features. Two kinds of
deep feature extraction modules are the spectral and spatial feature
extraction modules. The image reconstruction module contains two
convolution layers and a Gaussian Error Linear Unit (GELU) activation
function between the convolution layers.

Let  ∈ Rℎ×𝑤×𝑆 denote the observed LR-HSI, where ℎ, 𝑤, and 𝑆
re the numbers of rows, columns, and spectral bands in the LR-HSI.
et  ∈ R𝐻×𝑊 ×𝑠 denote the observed HR-MSI, where 𝐻 , 𝑊 , and 𝑠

are the numbers of rows, columns, and spectral bands in the HR-MSI.
First, we upsample the LR-HSI and downsample the HR-MSI to obtain
𝑢𝑝 ∈ R𝐻×𝑊 ×𝑆 and 𝑑𝑜𝑤𝑛 ∈ Rℎ×𝑤×𝑠 using the bilinear interpolation

ethod considering the trade-off between the performance and the
rocessing speed, which can be written as

𝑢𝑝 = Up(), (1)

𝑑𝑜𝑤𝑛 = Down(), (2)

here Up(⋅) and Down(⋅) denote the bilinear interpolation upsampling
nd downsampling functions, respectively. Then, we concatenate  and
𝑑𝑜𝑤𝑛 to get 𝑐𝑎𝑡 ∈ Rℎ×𝑤×(𝑆+𝑠), and concatenate  and 𝑢𝑝 to get
𝑐𝑎𝑡 ∈ R𝐻×𝑊 ×(𝑠+𝑆), which can be written as

𝑐𝑎𝑡 = Concat( ,𝑑𝑜𝑤𝑛),𝑐𝑎𝑡 = Concat(,𝑢𝑝), (3)

here Concat(⋅) represents the concatenation in the channel dimen-
ion. The cross-modality concatenations help to achieve cross-modality
nformation interaction between the two branches.

Since convolution is a simple yet effective way to map the image
o a higher dimensional feature space, we adopt a 2-D convolution
ith kernel size = 3, channel number 𝐶 = 64, and strides = 1 to

orm a residual network with blocks = 5 to extract shallow features
𝑠 ∈ Rℎ×𝑤×𝐶 and  ′

𝑠 ∈ R𝐻×𝑊 ×𝐶 as

𝑠 = SFE(𝑐𝑎𝑡),  ′
𝑠 = SFE(𝑐𝑎𝑡), (4)

here SFE(⋅) denotes the shallow feature extraction module. Then,
hree deep spectral and spatial feature extraction modules are employed
n the network to extract multiscale deep features, respectively. That
s, we set the number of deep spectral and spatial feature extraction
odules 𝐿 to 3 in this paper. Each deep spectral feature extraction
odule contains a band embedding layer, 𝐽 Spectral Transformers

SpeT), and a convolution layer used in the shallow feature extrac-
ion module (Fig. 1(b)). Each deep spatial feature extraction module
ontains a patch embedding layer, 𝐾 Spatial Transformers (SpaT), and

convolution layer used in the shallow feature extraction module
Fig. 1(c)). The 𝐽 and 𝐾 are both set to 5. Before 𝑠 is fed into SpeT,
e first obtain the band embedding of 𝑠. For the 𝑙th deep spectral

eature extraction modules, the band embedding is denoted as 𝐁0
𝑙 ∈

𝑐×𝐷𝑠𝑝𝑒 , where 𝑐 = 16 × 2𝑙−1 is the number of channels, 𝐷𝑠𝑝𝑒 is set
o 32. Similarly, before  ′

𝑠 is fed into SpaT, we first obtain the patch
mbedding of  ′

𝑠 . The patch embedding of the 𝑙th deep spatial feature
xtraction module is denoted as 𝐏0

𝑙 ∈ R𝑁×𝐷𝑠𝑝𝑎 , where 𝑝 = 8×2𝑙−1 is the
ize of each patch, 𝑁 = 𝐻×𝑊

𝑝2
is the number of patches, and 𝐷𝑠𝑝𝑎 is set to

256. In order to retain positional information, we need to add position
embeddings 𝐁𝑝𝑜𝑠

𝑙 ∈ R𝑐×𝐷𝑠𝑝𝑒 and 𝐏𝑝𝑜𝑠
𝑙 ∈ R𝑁×𝐷𝑠𝑝𝑎 , obtained as in [16],

to the band embedding and patch embedding, respectively. Next, we
extract spectral and spatial intermediate features 𝐁𝑗

𝑙 (𝑗 = 1,… , 𝐽 ) and
𝐏𝑘
𝑙 (𝑘 = 1,… , 𝐾) using SpeTs and SpaTs, respectively, as follows.
𝑗 𝑗−1
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𝐁𝑙 = SpeT𝑗 (𝐁𝑙 ), 𝑗 = 1… 𝐽 , (5)
𝐏𝑘
𝑙 = SpaT𝑘(𝐏𝑘−1

𝑙 ), 𝑘 = 1…𝐾, (6)

where SpeT𝑗 (⋅) and SpaT𝑘(⋅) represent the 𝑗th SpeT and 𝑘th SpaT,
respectively. Finally, we reshape 𝐁𝑗

𝑙 and 𝐏𝑘
𝑙 into 3-D matrice and feed

them into the convolution layer to obtain the output deep features
 𝑠𝑝𝑒
𝑙 ∈ Rℎ×𝑤×𝐶 and  𝑠𝑝𝑎

𝑙 ∈ R𝐻×𝑊 ×𝐶 . Then, the extracted multiscale fea-
tures are aggregated using learnable weights to obtain  𝑠𝑝𝑒

𝑠𝑢𝑚 ∈ Rℎ×𝑤×𝐶

and  𝑠𝑝𝑎
𝑠𝑢𝑚 ∈ R𝐻×𝑊 ×𝐶 .

The low-level information in an image can easily be extracted by the
shallow feature extraction modules. The deep feature extraction mod-
ules focus on extracting high-level information to represent semantic
content. So we aggregate shallow and deep features to obtain spectral
feature  𝑠𝑝𝑒 ∈ Rℎ×𝑤×𝐶 and spatial feature  𝑠𝑝𝑎 ∈ R𝐻×𝑊 ×𝐶 using a
long skip connection, which can help the network to retain low-level
information and high-level information at the same time. To ensure the
feature size is the same before reconstructing the image, we use a sub-
pixel convolution layer [55] to upsample the spectral feature  𝑠𝑝𝑒 to
obtain  𝑠𝑝𝑒

𝑢𝑝 ∈ R𝐻×𝑊 ×𝐶 , and concatenate  𝑠𝑝𝑒
𝑢𝑝 and  𝑠𝑝𝑎 to get spatial–

spectral feature  ∈ R𝐻×𝑊 ×2𝐶 . Then, spatial–spectral feature  is fed
into the image reconstruction module to obtain the estimated HR-HSI
 ′ ∈ R𝐻×𝑊 ×𝑆 . The procedures can be expressed as

𝑠𝑝𝑒
𝑢𝑝 = SpConv( 𝑠𝑝𝑒

𝑠𝑢𝑚 + 𝑠), (7)

𝑠𝑝𝑎 =  𝑠𝑝𝑎
𝑠𝑢𝑚 +  ′

𝑠 , (8)

= Concat( 𝑠𝑝𝑒
𝑢𝑝 , 𝑠𝑝𝑎), (9)

′ = IR( ), (10)

here SpConv(⋅) denotes the sub-pixel convolution layer, and IR(⋅)
enotes the function of the image reconstruction module. Finally, we
ptimize the parameters of the network by minimizing the 𝓁1 pixel loss

= ‖

‖

 ′ − ‖

‖1 , (11)

here  ∈ R𝐻×𝑊 ×𝑆 is ground truth HR-HSI.

.2. Spectral multi-head self-attention

In the spectral Transformer, the spectral self-attention is specially
esigned by calculating self-attention in the spectral dimension to
btain the correlation among the spectra, as shown in Fig. 2. First, we
nput 𝐁𝑗

𝑙 to obtain query matrix 𝐐 ∈ Rℎ𝑤×𝐷𝑠𝑝𝑒 , key matrix 𝐊 ∈ Rℎ𝑤×𝐷𝑠𝑝𝑒

nd value matrix 𝐕 ∈ Rℎ𝑤×𝐷𝑠𝑝𝑒 by a trainable linear projection as

= 𝐁𝑗
𝑙𝐖𝐐,𝐊 = 𝐁𝑗

𝑙𝐖𝐊,𝐕 = 𝐁𝑗
𝑙𝐖𝐕, (12)

here 𝐖𝐐, 𝐖𝐊, and 𝐖𝐕 ∈ R𝐷𝑠𝑝𝑒×𝐷𝑠𝑝𝑒 are learnable projection matrices.
hen, the scaled dot-product attention function with the query, key,
nd value matrices as input is defined as

ttention(𝐐,𝐊,𝐕) = 𝐕
(

sof tmax

(

𝐊𝑇𝐐
√

𝐷𝑠𝑝𝑒

))

, (13)

where Attention(⋅) is the scaled dot-product attention function. The
multi-head attention mechanism, which is also used in ViT, is employed
to enhance the feature extraction ability of the network. However,
unlike ViT splits 𝐐, 𝐊, and 𝐕 in the spectral dimension, we split them
nto 𝑀2 heads in the spatial domain, where 𝑀 is set to 2 for all the
atasets. The function of spectral multi-head self-attention (SpeMSA) is
ormulated as:

𝐞𝐚𝐝𝑚 = Attention(𝐐𝑚,𝐊𝑚,𝐕𝑚), 𝑚 = 1…𝑀2, (14)

𝑀2 ( )
SpeMSA(𝐐𝑚,𝐊𝑚,𝐕𝑚) = Concate𝑚=1 𝐡𝐞𝐚𝐝𝑚 𝐖, (15)
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Fig. 2. The architecture diagram of the proposed spectral Transformer.
where 𝐐𝑚, 𝐊𝑚, 𝐕𝑚 are the 𝑚th query matrix, key matrix, and value ma-
rix obtained by a trainable linear projection, respectively. SpeMSA(⋅)
s the spectral multi-head self-attention function, 𝐡𝐞𝐚𝐝𝑚 ∈ Rℎ𝑑𝑤𝑑×𝐷𝑠𝑝𝑒

epresents the 𝑚th head and 𝐖 ∈ R𝐷𝑠𝑝𝑒×𝐷𝑠𝑝𝑒 is a projection matrix with
earnable parameters.

.3. Multiscale embeddings

.3.1. Multiscale band embeddings
The SpeT is proposed to extract the strong correlation from the

SI. To enhance the ability of the SpeT on excavating features, we
ntroduce multiscale band embeddings to extract multiscale spectral
eatures, which are then fused to enhance the details of the final
xtracted features, as shown in Fig. 1(a). To achieve this goal, we use
convolution operator with kernel size = 3 and channel number 𝑐 to

utput band embeddings with different scales. Then, we feed the band
mbeddings with different scales into the SpeTs to extract multiscale
pectral features. Finally, by aggregating the extracted multiscale spec-
ral features using learnable weights [56,57], we can obtain  𝑠𝑝𝑒

𝑠𝑢𝑚 as
ollows,

𝑠𝑝𝑒
𝑠𝑢𝑚 =

𝐿
∑

𝑙=1

(

𝑤𝑠𝑝𝑒
𝑙  𝑠𝑝𝑒

𝑙
)

s.t.,
𝐿
∑

𝑙=1
𝑤𝑠𝑝𝑒

𝑙 = 1, 𝑤𝑠𝑝𝑒
𝑙 > 0, (16)

here 𝑤𝑠𝑝𝑒
𝑙 represents the learnable weights of spectral features ex-

racted by the 𝑙th deep spectral feature extraction.

.3.2. Multiscale patch embeddings
We use SpaTs to extract spatial features from the HR-MSIs. The

paT shares the same structure as ViT, which splits an image into
atches with only a fixed size and provides the sequence of linear
mbeddings of these patches. Since the fineness of the features obtained
nder patch embeddings of different scales can be quite different, we
ntroduce multiscale patch embeddings to enrich the extracted features,
s shown in Fig. 1(a). To this end, we first split an image into patches
ith different sizes 𝑝 and provide the sequence of linear embeddings of

hese patches, as done in [16]. Then, we input the patch embeddings
ith different scales into the SpaTs to capture multiscale deep spatial

eatures. Lastly, we aggregate the extracted multiscale deep spatial
eatures using learnable weights [56,57], which can be expressed as

𝑠𝑝𝑎
𝑠𝑢𝑚 =

𝐿
∑

𝑙=1

(

𝑤𝑠𝑝𝑎
𝑙  𝑠𝑝𝑎

𝑙
)

s.t.,
𝐿
∑

𝑙=1
𝑤𝑠𝑝𝑎

𝑙 = 1, 𝑤𝑠𝑝𝑎
𝑙 > 0, (17)

here 𝑤𝑠𝑝𝑎
𝑙 represents the learnable weights of spatial features ex-
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racted by the 𝑙th deep spatial feature extraction.
3.4. Self-supervised pre-training

Training the network from scratch requires a huge amount of time
and data. Therefore, we hope the network can be trained with a better
initialization. In other words, we need a pre-training network that can
quickly obtain better results when performing similar tasks next time.

Generally, pre-training learning can be divided into supervised
learning and unsupervised learning. Self-supervised learning is an in-
termediate form between supervised and unsupervised learning. It uses
unlabeled data sets in the pre-training stage and has produced promis-
ing results in various applications [17,58]. Therefore, we pre-trained
our model in a self-supervised learning manner.

3.4.1. Masked patches autoencoder
To do self-supervised pretraining, He et al. [17] proposed an MAE

with an asymmetric encoder–decoder structure, in which the decoder
adopts ViT [16] to reconstruct the random lost patches from the
unmask parts of the input image. Following the idea of ViT, the MAE
encoder first encodes the patches through linear projection, followed
by the addition of position information, and feeds them into a stack of
continuous Transformer blocks. Nevertheless, unlike standard ViT, the
encoder of MAE only needs to run on visible patches, which enables
MAE to train a very large encoder.

MAE has a simple structure with robust scalability and good gener-
alization. The representation learned by MAE can be well generalized
to the downstream tasks. In this paper, we propose a masked patches
autoencoder (MPAE) by removing the class token of MAE. Besides, we
set MPAE as a symmetric encoder–decoder structure, and the masked
patches are set as the learnable tokens. Finally, we keep the patch
embeddings (Fig. 3) that have learned the spatial features of HR-MSI
via the encoder for subsequent fine-tuning.

Since MPAE pre-trains the network by reconstructing the randomly
masked patches from the unmasked patches of the input HR-MSIs. The
patch masking ratios of HR-MSIs at the pre-training stage will have a
significant influence on the final fusion performance. Fig. 4 presents the
reconstructed PSNR values as a function of masking ratios of HR-MSIs
using the CAVE dataset with a downsampling ratio of 8. From Fig. 4,
we can see that the best PSNR value appears when the masking ratio
is 50%. Thus, we set the masking ratios of HR-MSIs to 50% for all the
datasets.

3.4.2. Masked bands autoencoder
In MPAE, the slicing of the patches is performed in the spatial

dimension, so the encoder of MPAE can effectively obtain the spatial
representation of HR-MSI. To effectively obtain the spectral features
from LR-HSI, we further propose a masked spectral band autoencoder

(MBAE), as shown in Fig. 5. Similarly, the proposed MBAE has a
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Fig. 3. The architecture diagram of the masked patches autoencoder.
Fig. 4. Reconstructed PSNR values as a function of the masking ratios of HR-MSIS and
LR-HSIs on the CAVE dataset with a downsampling ratio equal to 8.

symmetrical encoder–decoder structure. However, different from MPAE
which divides the image into patches in the spatial domain, the pro-
posed MBAE extracts spectral features by operating the data across the
spectral domain to better extract spectral features. More specifically,
we randomly mask some spectral bands of the input images and then
use the decoder to reconstruct the masked spectral bands.

The encoder of MBAE adopts the spectral Transformer, whose inputs
are unmasked spectral bands and masked spectral bands that are set as
the tokens. We first embed spectral bands by a linear projection. Then,
the embedded bands with added positional embeddings are fed into a
series of Transformer layers to learn the global spectral features. At the
decoding stage, a series of Transformer layers of the decoder are used
to reconstruct the representation of each masked spectral band.

Similarly, MBAE pre-trains the network by reconstructing the ran-
domly masked bands from the unmasked bands of the input HR-MSIs.
To investigate the influence of the band masking ratios of LR-HSIs on
the final fusion performance, we also present in Fig. 4 the reconstructed
PSNR values with different masking ratios of LR-HSIs using the CAVE
dataset with a downsampling ratio of 8. It can be observed from Fig. 4
that the best PSNR value appears at the masking ratio of 75%. Thus,
we set the masking ratios of the LR-HSIs to 75% for all the datasets.
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3.5. Fine-tuning

The purpose of fine-tuning is to apply the pre-trained model to the
subsequent image fusion task. We first updated the parameters of our
network using the pre-trained encoders, and then end-to-end fine-tuned
the whole network. Fine-tuning with patches larger than pre-training is
usually more beneficial [59,60]. In order to further improve the ability
of the pre-trained Transformer encoder to extract the spectral features
of LR-HSI and the spatial features of HR-MSI, we used patches with
larger sizes than pre-training for the end-to-end fine-tuning.

4. Experiments

4.1. Datasets

In this paper, we employ two benchmark datasets and two re-
mote sensing datasets for evaluation. The Columbia computer vision
laboratory (CAVE) dataset [61], the Harvard dataset [62], and the
Washington DC Mall (WDCM) dataset [63] are used for simulations.
The Yellow River Estuary (YRE) dataset [64] is a full resolution dataset
used for full resolution experiments.

The CAVE dataset contains 32 indoor HSIs. Each HSI has a dimen-
sion of 512 × 512 pixels with 31 spectral bands. The images were
acquired at 10 nm wavelength intervals in the range from 400 nm to
700 nm. We use the first 22 HSIs for training, five HSIs for validation,
and the last five HSIs for testing.

The Harvard dataset includes 50 HSIs of both indoor and outdoor
scenes, featuring a diversity of objects in daylight illumination. Each
HSI has 31 spectral bands whose wavelengths range from 420 nm to
720 nm. The size of each HSI in this dataset is 1040 × 1392 pixels. We
use the first 34 HSIs for training, eight HSIs for validation, and the last
eight HSIs for testing.

The WDCM dataset is a remote sensing HSI captured by the Hydice
sensor over the National Mall in Washington, DC, in 1995. It has 191
bands covering the wavelength range from 400 nm to 2400 nm. Each
band of HSI contains 1280 × 307 pixels with a spatial resolution of
2.5 m. We cropped two sub-images with a size of 128 × 128 pixels on
the bottom left corner for validation and testing, respectively. The rest
of the dataset is used for training.

The YRE dataset is a full resolution dataset. It contains a remote
sensing HSI captured by the advanced hyperspectral imager (AHSI)
aboard the GaoFen-5 satellite and a remote sensing MSI captured by
the multispectral imager (MSI) aboard the Sentinel-2 A satellite. The
HSI contains 280 bands with wavelength ranges covering 400 nm to
2500 nm. Each band has a size of 1400 × 1400 pixels with a spatial
resolution of 30 m. The MSI contains four bands with wavelength
ranges from 430 nm to 680 nm. Each band has 4200 × 4200 pixels
in size with a spatial resolution of 10 m.
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Fig. 5. The architecture diagram of the masked bands autoencoder.
4.2. Experimental settings

For the CAVE, Harvard, and WDCM datasets, we need to simulate
LR-HSIs and HR-MSIs from HR-HSIs. We followed Wald’s protocol
to simulate the observed LR-HSIs and HR-MSIs [14,37,63,65]. First,
we applied a Gaussian filter to the HR-HSI of the CAVE, Harvard,
and WDCM datasets, respectively, to generate the blurred HSIs. Then,
we generated the LR-HSIs by downsampling the blurred HSIs with
ratios of 4 and 8, respectively, to simulate different spatial resolutions.
For the CAVE and Harvard datasets, the HR-MSIs with three bands
were generated using the given spectral response matrix of Nikon
D700 [14,33,37]. For the WDCM dataset, the HR-MSI with ten bands
was generated using the spectral response matrix of the Sentinel-2 A
instrument [63]. As to the real dataset, YRE, we generated the training
samples after downsampling the observed HSI and MSI with a factor
of 3, as done in [66,67]. The original HSI is regarded as the ground
truth. After training, we fused the original HSI and MSI to estimate the
HR-HSI using the trained model.

We first input HR-MSIs into MPAE and LR-HSIs into MBAE for self-
supervised pre-training and then loaded the parameters of the two
pre-trained encoders into the proposed network for end-to-end fine-
tuning. Since the generalization of the network is of crucial importance
for deep learning based methods, we pre-trained the network using only
the CAVE dataset, and then fine-tuned the network using the CAVE
dataset and the Harvard dataset, respectively. Thus, the experiments
on the Harvard dataset can be viewed as a test for the network’s
generalization. The optimizer used was Adaptive Moment Estimation
(AdamW). The learning rates in the pre-training stage and the end-
to-end fine-tuning stage were set to 1.0e−3 and 1.0e−4, respectively.
Batch size and epoch were set to 32 and 5000. In addition, in the pre-
training, the HR-MSIs of the training set were cropped into patches of
128 × 128 pixels in size, so the LR-HSIs of the training set were cropped
into patches of size 128

𝑟 × 128
𝑟 pixels, where 𝑟 is the downsampling ratio.

In the end-to-end fine-tuning, the HR-MSIs were cropped into patches
of size 192 × 192 pixels, and the LR-HSIs were cropped into patches of
size 192

𝑟 × 192
𝑟 pixels.

To effectively evaluate the performance of the proposed method,
we introduce seven state-of-the-art fusion methods for comparison,
including two traditional methods, i.e., FUSE [8] and CNMF [24],
four CNN-based methods, i.e., DBIN [66], MHF-Net [32], UAL [38],
and SSR-NET [14], and a newly proposed Transformer-based method,
Fusformer [54]. The parameters in different compared methods were
set based on either authors’ codes or suggestions in the reference
articles. The two traditional methods were tested in MATLAB (R2013a)
on Windows Server 2012 with two Intel Xeon E5-2650 processors and
128-GB RAM, the deep learning based methods were tested by Pytorch
1.10.0 on Python 3.7 using a GPU of NVIDIA A40.
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4.3. Evaluation metrics

Five popular indexes are used in this paper to fully evaluate the
quality of the reconstructed HR-HSI at reduced resolution. They are
given in detail in the following.

• Peak signal-to-noise ratio (PSNR): PSNR is an objective evaluation
index used to evaluate the noise level or image distortion. The
higher the value of PSNR, the less distortion and the better quality
of the estimated image. Its calculation formula is as follows:

PSNR( , ′) = 10 lg

⎛

⎜

⎜

⎜

⎝

max
(
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⎟
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⎠

, (18)

where max(⋅) is a function that returns the maximum value,  ′ is
the estimated HR-HSI,  is the ground truth HR-HSI, 𝐗𝑘 and 𝐗′

𝑘
denote the 𝑘th band of the reference HR-HSI and the estimated
HR-HSI, respectively.

• Spectral angle mapper (SAM): SAM is a metric for estimating
the spectral quality of an image. It is obtained by computing the
averaged spectral angle over the entire spatial domain. The lower
the value of SAM, the less spectral distortion. The optimal value
is 0.

SAM( , ′) = 1
𝐻𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
arccos

(

𝐗𝑇 (𝑖, 𝑗)𝐗′(𝑖, 𝑗)
‖𝐗(𝑖, 𝑗)‖2 ‖𝐗′(𝑖, 𝑗)‖2

)

, (19)

where 𝐻 and 𝑊 are the numbers of rows and columns in the
ground truth HR-HSI, 𝐗(𝑖, 𝑗) and 𝐗′(𝑖, 𝑗) represent the pixel vector
of the reference HR-HSI and the estimated HR-HSI at position
(𝑖, 𝑗).

• Structural similarity index metric (SSIM): SSIM is used to evaluate
the level of similarity between two images. The higher the value
of SSIM, the better the spatial structure preservation.

SSIM( , ′) = 1
𝑆

𝑆
∑

𝑘

(

2𝜇𝐗𝑘
𝜇𝐗′

𝑘
+ 𝐶1

)(

2𝜎𝐗𝑘𝐗′
𝑘
+ 𝐶2

)

(

𝜇2
𝐗𝑘

+ 𝜇2
𝐗′
𝑘
+ 𝐶1

)(

𝜎2𝐗𝑘
+ 𝜎2

𝐗′
𝑘
+ 𝐶2

) , (20)

where 𝑆 is the number of spectral bands in the ground truth HR-
HSI, 𝐶1 and 𝐶2 are constants, 𝜎𝐗𝑘𝐗′

𝑘
denotes the covariance matrix

between 𝐗𝑘 and 𝐗′
𝑘, 𝜇𝐗𝑘

and 𝜇𝐗′
𝑘

represent the average values, 𝜎𝐗𝑘
and 𝜎𝐗′

𝑘
are the standard deviation of 𝐗𝑘 and 𝐗′

𝑘, respectively.
• Erreur relative globale adimensionnelle de synthèse (ERGAS):

ERGAS is specially designed to evaluate the overall quality of the
fused images. The lower the value of ERGAS, the better the fusion
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Table 1
Experimental results of different fusion methods on the CAVE, Harvard, and WDCM datasets with different downsampling ratios.

Ratio Method CAVE Harvard WDCM

PSNR SAM SSIM ERGAS RMSE PSNR SAM SSIM ERGAS RMSE PSNR SAM SSIM ERGAS RMSE

8

FUSE 37.53 2.93 0.9927 1.3648 0.0128 37.64 3.24 0.9932 1.2363 0.0122 31.16 4.53 0.9854 1.2754 0.0211
CNMF 38.97 2.71 0.9942 1.2663 0.0117 41.11 2.74 0.9970 0.9248 0.0053 32.23 3.88 0.9896 1.1514 0.0191
DBIN 42.86 1.98 0.9980 0.8078 0.0067 42.25 2.59 0.9983 0.7192 0.0047 35.25 3.38 0.9953 0.9668 0.0171
MHF-Net 43.19 1.93 0.9980 0.7635 0.0063 42.56 2.46 0.9980 0.7234 0.0046 36.92 2.76 0.9967 0.7983 0.0141
UAL 44.49 1.75 0.9986 0.6881 0.0056 43.87 2.11 0.9986 0.6153 0.0039 38.48 2.31 0.9977 0.6666 0.0118
SSR-NET 44.26 1.79 0.9985 0.6962 0.0058 43.59 2.09 0.9986 0.6125 0.0034 37.83 2.49 0.9973 0.7188 0.0127
Fusformer 46.61 1.35 0.9990 0.5341 0.0044 44.31 2.04 0.9987 0.5973 0.0036 38.93 2.19 0.9979 0.6328 0.0112
MSST-Net 47.44 1.22 0.9991 0.4841 0.0040 45.39 1.79 0.9990 0.5212 0.0031 40.41 1.85 0.9986 0.5337 0.0095

4

FUSE 38.41 2.79 0.9932 2.6104 0.0119 38.13 2.98 0.9952 2.2253 0.0079 32.04 4.01 0.9889 2.3754 0.0198
CNMF 39.78 2.35 0.9955 2.2672 0.0101 42.47 2.49 0.9980 1.4953 0.0046 33.12 3.57 0.9910 2.2005 0.0178
DBIN 43.92 1.68 0.9984 1.4041 0.0061 43.48 2.19 0.9985 1.2815 0.0040 38.86 2.78 0.9972 1.6068 0.0142
MHF-Net 44.85 1.58 0.9985 1.2983 0.0056 43.95 2.02 0.9987 1.2110 0.0038 37.66 2.53 0.9978 1.4651 0.0129
UAL 45.98 1.41 0.9983 1.1201 0.0046 44.65 1.95 0.9988 1.1350 0.0033 39.04 2.10 0.9980 1.2496 0.0111
SSR-NET 45.24 1.55 0.9987 1.2443 0.0053 44.31 1.91 0.9988 1.1527 0.0032 38.80 2.22 0.9979 1.2853 0.0114
Fusformer 47.43 1.53 0.9990 0.9635 0.0041 45.06 1.82 0.9990 1.0684 0.0033 39.89 1.95 0.9983 1.1341 0.0100
MSST-Net 48.37 1.09 0.9994 0.8624 0.0036 46.00 1.65 0.9992 0.9599 0.0029 41.73 1.59 0.9989 0.9172 0.0081
result.
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where 𝑟 is the downsampling ratio and 𝜇(⋅) denotes the mean
value.

• Root mean squared error (RMSE): RMSE is used to represent
the difference between  and  ′. Smaller RMSE means smaller
reconstruction errors and better reconstruction quality.

RMSE( , ′) =

√

∑𝑆
𝑘=1

∑𝐻
𝑖=1

∑𝑊
𝑗=1

(

𝐗𝑘(𝑖, 𝑗) − 𝐗′
𝑘(𝑖, 𝑗)

)2

𝐻𝑊𝑆
, (22)

where 𝐗𝑘(𝑖, 𝑗) and 𝐗′
𝑘(𝑖, 𝑗) denote the element value at position

(𝑖, 𝑗) in the 𝑘th band of the reference HR-HSI and the estimated
HR-HSI, respectively.

For the full resolution experiments, since a reference image at full
resolution is unavailable, we adopt two commonly used quality indexes
without reference to evaluate the fusion performance at full resolution
quantitatively [68]. Detailed descriptions of the two indexes are given
in the following.

• Quality with No Reference (QNR): QNR is the product of one’s
complements of the spatial and spectral distortion indices [69]. It
is calculated as:

QNR ≜
(

1 −𝐷𝜆
)𝛼

⋅
(

1 −𝐷𝑠
)𝛽 , (23)

where 𝐷𝜆 and 𝐷𝑠 denote the spectral distortion index and spatial
distortion index, respectively, as defined in [69]. 𝛼 and 𝛽 are
two real-valued exponents that attribute the relevance of spectral
and spatial distortions to the overall quality. The two exponents
jointly determine the non-linearity of response in the interval
[0,1]. The highest value of QNR is one and is obtained when the
spectral and spatial distortions are both zero.

• Hybrid Quality with No Reference (HQNR): HQNR is a unique
quality index that combines the spatial distortion of the QNR
protocol and the spectral distortion of Khan’s protocol [70]. The
calculation formula of HQNR is:

HQNR ≜
(

1 −𝐷(𝐾)
𝜆

)

⋅
(

1 −𝐷𝑠
)

, (24)

where 𝐷(𝐾)
𝜆 is the spectral distortion of Khan’s protocol, as defined

in [70].

4.4. Experimental results

Table 1 shows the average quantitative results on the CAVE, Har-
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vard, and WDCM datasets. The optimal results are marked in bold
for clarity. From Table 1, we can clearly see that the two traditional
methods, FUSE and CNMF fail to produce desired results as deep learn-
ing based methods on all three datasets. All the deep learning based
methods obtain comparable fusion performance on the three datasets.
When the downsampling ratio is 8, Fusformer achieves the second-best
fusion performance on the CAVE and WDCM datasets, and SSR-NET
ranks second on the Harvard dataset. When the downsampling ratio is
4, UAL, SST-NET, and Fusformer rank second on the CAVE, Harvard,
and WDCM datasets, respectively. Based on the superior ability of the
Transformer to capture long-term information, Fusformer can produce
better or more competitive fusion results in comparison with other
CNN-based methods on all three datasets. Compared with Fusformer,
Our method significantly outperforms all the competitors on three
datasets with different downsampling ratios. Different from Fusformer,
which uses a Transformer to extract spatial and spectral features simul-
taneously and obtain features at a single scale, the proposed MSST-Net
uses multiscale spectral and spatial Transformers to extract features
from different modalities, considering the high spectral correlation of
the HSI and rich spatial information of the MSI. The superior fusion
performance of the proposed method can be jointly attributed to the
cross-modality concatenations, the elaborated multiscale spectral and
spatial Transformers, and the self-supervised pre-training strategy.

To further evaluate the reconstruction performance of each band,
we show the PSNR values of each reconstructed band for the three
tested datasets in Fig. 6. It can be clearly observed from Fig. 6 that the
proposed method produces significantly higher PSNR values than that
of the compared methods at almost all the bands, suggesting that the
proposed method achieves better overall reconstruction quality than
other methods on all the datasets.

In order to evaluate the quality of the fused images visually, we
present some bands and their corresponding error maps of the fusion
results in Figs. 7 to 9. The error maps are obtained by calculating the
absolute difference between the ground truth HR-HSI and the estimated
HR-HSI. Fig. 7 shows the 21st estimated bands and their corresponding
error maps of the CAVE dataset with different downsampling ratios.
Obviously, the two traditional methods, i.e., FUSE and CNMF, fail to
produce competitive results at this band, which can be easily observed
from the estimated bands and the error maps. Deep learning based
methods can produce estimated bands with very similar visual effects,
but the fewer residuals left in error maps of the proposed method as
indicated in the red boxes suggest that the proposed method can retain
more spatial details in the estimated bands. The 26th estimated band
and its corresponding error maps of the Harvard dataset with different
downsampling ratios are shown in Fig. 8. It can be observed from
Fig. 8 that all the methods produce competitive results at different
downsampling ratios. However, the proposed method can produce

results with higher quality, since there are fewer residuals remaining
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Fig. 6. The band-wise PSNR values for the fake and real beer’s image of the CAVE dataset, the imgb6 image of the Harvard dataset, and the WDCM dataset with downsampling
ratios equal to 8 and 4.
Fig. 7. The 21st band of the fusion images and the reconstruction error maps on the fake and real beer’s image of the CAVE dataset with downsampling ratios equal to 8 and 4.
in the error maps of the proposed method, in particular in the areas
marked by the red boxes. We present the 14th estimated band and its
corresponding error maps of the WDCM dataset in Fig. 9. In this band,
all the methods fail to obtain satisfying results except for the proposed
method. One of the challenges in image reconstruction is to recover the
texture features of the image. The proposed method can better recover
spatial textures compared with other methods, which can be obviously
observed in the areas of rich textures, for example, the areas marked
by the red boxes.

Note that the results of the Harvard dataset were obtained by pre-
training the network on the CAVE dataset first, and then fine-tuning the
network using the Harvard dataset, which can be viewed as a test of
the proposed network’s generalization. The proposed network achieves
the best fusion performance on the Harvard dataset for all the metrics,
demonstrating the good generalization of the proposed network. We
believe that the excellent generalization of the proposed network comes
mainly from the well-designed self-supervised pre-trained strategy.
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To test the performance of the proposed method on the full resolu-
tion dataset, we use a sub-image of 576 × 576 pixels in size cropped
from the YRE dataset for experiments. The reconstructed HR-HSIs
generated by different methods are presented as pseudo-color images in
Fig. 10. It can be seen that although the traditional methods can obtain
HR-HSIs with high spatial resolutions, they will induce severe spectral
distortion. In contrast, the methods based on deep learning can well
preserve spectral information while improving spatial resolution. In
particular, the reconstructed HR-HSI obtained by our proposed method
has a better visualization effect compared with other deep learning
based methods. We utilized QNR and HQNR to evaluate the fusion
performance quantitatively [68]. The evaluation results are presented
in Fig. 11. It can be easily observed that the proposed method achieves
the best scores for both indexes, indicating the better reconstruction
performance of the proposed method compared with its competitors.

To analyze the computational burden, we present the training time,
testing time, floating point operations (FLOPs), and the number of
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Fig. 8. The 26th band of the fusion images and the reconstruction error maps on the imgb6 image of the Harvard dataset with downsampling ratios equal to 8 and 4. .

Fig. 9. The 14th band of the fusion images and the reconstruction error maps on the WDCM dataset with downsampling ratios equal to 8 and 4.

Fig. 10. The pseudo-color images (R-66, G-36, B-31) of the LR-HSI and the reconstructed HR-HSIs of the YRE dataset.
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Fig. 11. No reference indexes for fusion result of the YRE dataset.

Table 2
Training time, testing time, FLOPs, and number of parameters of different fusion
methods on the CAVE dataset with a downsampling ratio equal to 8.

Method CAVE

Training time (s) Testing time (s) FLOPs (G) Parameters (M)

FUSE / 34.08 / /
CNMF / 544.32 / /
DBIN 1.68 × 105 2.12 130.37 1.43
MHF-Net 7.37 × 104 5.17 22.54 3.63
UAL 9.56× 104 2.41 213.30 7.10
SSR-NET 6.45 × 104 3.87 0.43 0.03
Fusformer 1.29 × 105 4.51 1.83 0.11
MSST-Net 1.10 × 105 4.06 188.72 34.40

parameters of different fusion methods on the CAVE dataset in Table 2.
According to the experimental results, it can be easily seen that the
testing time of traditional methods is much longer than that of deep
learning based methods. Since the computation of the Transformer is
time-consuming, our proposed method is not the fastest in terms of
training time and testing time compared with CNN-based methods.
However, our method takes less time compared to Fusformer, which
takes pixel-wise tokens as input. As for FLOPs and the number of
parameters, our method has relatively larger FLOPs and parameters,
which is most likely due to the use of convolution with large-scale
transpose in the multiscale patch embeddings.

4.5. Ablation studies

To study the influence of the main modules in our proposed net-
work, we conducted a series of ablation studies on the CAVE dataset
with a downsampling ratio of 8 by taking the result without pre-
training as the baseline (the penultimate column of Table 3). To verify
the effect of the cross-modality concatenations, we conducted an ex-
periment without cross-modality concatenations. The results are shown
in the first column of Table 3. It can be seen that the PSNR without
cross-modality concatenations decreased by 1.87 dB compared to the
baseline (the penultimate column of Table 3), and all the other metrics
decreased as well, which indicates that the cross-modality information
interaction between the dual branches could help to improve the fusion
performance.

SpeTs and SpaTs are introduced to extract spectral and spatial
information due to their strong ability to capture long-distance de-
pendencies. In the SpeTs and SpaTs, spectral and spatial multi-head
self-attentions are specially designed to capture more detailed spectral
and spatial features, respectively. We first performed an ablation ex-
periment to verify the effectiveness of the SpeTs by replacing the SpeTs
with the SpaTs. The results are shown in the second column of Table 3.
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It can be clearly seen that the results are significantly worse than the
baseline (the penultimate column of Table 3) in all metrics, which
indicates that the spectral Transformers are more powerful in extracting
spectral features. At the same time, SpaTs were replaced with SpeTs
to verify the effectiveness of SpaTs in extracting spatial information.
It can also be clearly seen from the third column of Table 3 that the
results are significantly worse than the baseline (penultimate column
of Table 3) in all metrics, which indicates that the proposed network
would be weaker in extracting spatial features without SpaTs.

Multiscale band embeddings are proposed to extract the multi-
scale spectral features, which will be fused using learnable weights
to enhance the abundance of the extracted features. We can see from
Table 3 that the results of single-scale band embedding (the fourth
column) are significantly worse than the results of multiscale band
embeddings (the penultimate column of Table 3), which proves the
effectiveness of the extracted multiscale spectral features in improving
the fusion performance. Fig. 12(a)–(c) show the spatial features of
an image obtained with patch embeddings at different scales, i.e., 8
×8, 16× 16, and 32 × 32, for qualitative assessment. It is obvious that
spatial features obtained with different patch embeddings are quite
different, which motivates us to use multiscale patch embeddings to
extract spatial features. Fig. 12(d) and 12(e) present the fused features
using fixed weights and with learnable weights, respectively. It can be
easily observed that the fused feature with learnable weights contains
more details than the fused feature with fixed weights. We show the
quantitative results of single-scale patch embedding with a patch size
of 16 × 16 in the fifth column of Table 3. All the metrics of single-
scale path embedding decreased, to some extent, compared with the
results of multiscale patch embeddings (the penultimate column of
Table 3), demonstrating the effectiveness of the proposed multiscale
patch embeddings. The above results demonstrate the effectiveness of
extracted multiscale features in improving fusion performance.

To verify the effectiveness of the proposed pre-training strategy,
we first pre-trained the SpeTs and SpaTs and then loaded the pre-
trained SpeTs and SpaTs into the proposed network for fine-tuning.
The experimental results are given in the final columns of Table 3.
We can see that the results with self-supervised pre-training and fine-
tuning are significantly improved compared with baseline metrics (the
penultimate column of Table 3), demonstrating the effectiveness of the
proposed pre-training strategy.

In summary, we propose a multiscale spatial–spectral Transformer
Network for the fusion of hyperspectral and multispectral images. The
proposed network extracts spectral and spatial information from HSIs
and MSIs using SpeTs and SpaTs, respectively, in which spectral and
spatial multi-head self-attentions are specially designed to obtain the
strong ability to capture long-distance dependencies. Considering the
limitation of existing Transformers on excavating detailed information
at different levels of granularity, multiscale band/patch embeddings
are proposed to take full advantage of the high spectral correlation
of HSIs and rich spatial textures of the MSIs. To further improve the
fusion performance and generalization of the network, an MPAE, which
is specially designed to randomly mask the bands of the HSI, as well
as an MPAE, are employed for the self-supervised pre-training of the
SpeTs and SpaTs. The above reasons jointly contribute to the excellent
fusion performance of the proposed network for hyperspectral and
multispectral image fusion, which has been fully validated using a
series of ablation experiments.

5. Conclusion

This paper proposes a Multiscale Spatial–spectral Transformer Net-
work (MSST-Net) to address the HR-MSI and LR-HSI fusion task. Our
MSST-Net mainly contains two shallow feature extraction modules, two
kinds of deep feature extraction modules, and an image reconstruction
module. The deep spectral feature extraction module contains a series
of spectral Transformers working on the spectral dimension to extract
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Table 3
Ablation experimental results on the CAVE dataset with a downsampling ratio equal to 8.
Cross-modality concatenations ✗ ✓ ✓ ✓ ✓ ✓ ✓

Spectral Transformers ✓ ✗ ✓ ✓ ✓ ✓ ✓

Spatial Transformers ✓ ✓ ✗ ✓ ✓ ✓ ✓

Multiscale band embeddings ✓ ✓ ✓ ✗ ✓ ✓ ✓

Multiscale patch embeddings ✓ ✓ ✓ ✓ ✗ ✓ ✓

Pre-training ✗ ✗ ✗ ✗ ✗ ✗ ✓

PSNR 45.05 45.89 46.37 46.29 46.03 46.92 47.44
SAM 1.64 1.43 1.37 1.38 1.41 1.32 1.22
SSIM 0.9985 0.9987 0.9990 0.9989 0.9988 0.9990 0.9991
ERGAS 0.6572 0.5965 0.5552 0.5604 0.5851 0.5344 0.4841
RMSE 0.0055 0.0049 0.0048 0.0046 0.0048 0.0045 0.0040
Fig. 12. Spatial feature maps of patch embeddings at different scales. (a) 8 × 8. (b) 16 × 16. (c) 32 × 32. (d) Fused feature map with fixed weights. (e) Fused feature map with
learnable weights.
the spectral features of LR-HSI. The deep spatial extraction modules
with different scale patch embeddings are proposed to obtain multiscale
spatial features of HR-MSI. Furthermore, we propose a self-supervised
pre-training strategy to further improve the fusion performance. Two
autoencoders, i.e., MPAE and MBAE, are designed for self-supervised
pre-training of the spatial and spectral Transformers, respectively. Ex-
tensive experiments were performed on three simulated datasets and
one real dataset. The experimental results suggest that our model can
achieve excellent performance compared with other state-of-the-art
methods.

However, the proposed network only focuses on the fusion of well-
registered image pairs. If there are large misalignments between the
images, our proposed network may be unworkable. Therefore, in fu-
ture research, we will focus on extending the network to be able to
handle both well-registered and unregistered cases by introducing some
regularizations to constrain the representations of the two modalities.
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