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Abstract— In the hyperspectral image, each pixel corresponds
to a small area on the Earth’s surface and represents the intrinsic
characteristic of objects, which can be applied for recognition of
land covers. Nevertheless, hyperspectral image processing should
face some critical issues, and a small sample set problem may
be the most challenging one in the research. Deep learning (DL),
which has successfully been applied in many fields, has also
been introduced for hyperspectral image classification. However,
the large gap between the massive parameters to be tuned and
limited labeled samples can lead to overfitting scenario, inevitably
deteriorating the generalization ability of the DL model. In this
article, a lightweight convolutional neural network (LWCNN)
is proposed for hyperspectral image classification to mainly
tackle the small sample set problem. Especially, spatial–spectral
Schroedinger eigenmaps (SSSE) feature extraction is first
adopted to obtain the joint spatial–spectral information, and the
compressed dimensionality could significantly reduce the number
of parameters in the following DL model. Second, a dual-scale
convolution (DSC) module is carefully designed to address
the SSSE features from a 1-D vector viewpoint (the number
of parameters is further decreased), and the DSC procedure
is successively employed to obtain the hierarchical structure
description that could represent data distribution from different
aspects. Subsequently, the feature vectors from all DSC layers
are separately filtered by a new bichannel fusion (BCF) module,
which could well encode both the intrinsic and contextual
information inside DSC features. Finally, the filtered features
are concatenated together and imported into a global average
pooling classifier to achieve the predicted probability of each
category. Experimental results on three famous hyperspectral
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image data sets illustrate that the developed LWCNN approach
is advantageous in both the efficiency and robustness sides for
hyperspectral image classification tasks and outperforms other
state-of-the-art methods (both traditional-based and DL-based)
with very limited labeled samples.

Index Terms— Deep learning (DL), hyperspectral imagery.

I. INTRODUCTION

HYPERSPECTRAL sensor can capture spectral and spa-
tial information of the observing object simultaneously

and provide a hyperspectral data cube, called a hyperspectral
image. Generally, the hyperspectral image contains hundreds
of narrow spectral bands ranging from visible to near-infrared
and can be naturally used to identify the various materials,
which is one of the most important techniques in many
areas [1]–[3]. However, the high dimensionality with a small
number of labeled samples may lead to the Hughes phenom-
enon [4]. Correspondingly, band selection/feature extraction
methods have been extensively studied, in which the former
tries to pick out the most representative or discriminative
bands directly from the raw hyperspectral data [5], while
the latter aims to find an appropriate transformation to map
the high-dimensional data into low-dimensional space, includ-
ing principal component analysis (PCA) [6]–[8], independent
component analysis (ICA) [9]–[11], and local linear embed-
ding (LLE) [12], [13]. Alternatively, since spatial consistency
can often be observed in the hyperspectral image (which
means that pixels in the adjacent spatial region have a high
possibility within the same class), the works that exploit
the spatial correlation have also been researched, including
gray-level co-occurrence matrix (GLCM) [14], [15], extended
morphological profiles (EMPs) [16], sparse representation
[17], [18], and superpixel-based methods [19], [20].

Nowadays, the most attracted strategy for hyperspectral
image classification is to take advantage of both spectral
and spatial information together. Concretely, multiple ker-
nel learning with nonlinear description [21] and superpixel
guidance [22] are applied to extract spatial–spectral features.
In [23], edge-preserving filtering is utilized as a postprocessing
technique to improve the probability output of the support
vector machine (SVM) classifier. Besides, a number of 2-D
operators have been extended to 3-D domain, such as 3-D
GLCM [24], 3-D local binary pattern (LBP) [25], 3-D wavelet
transform [26], [27], and 3-D Gabor wavelet [28]–[30], and the
internal spatial–spectral structure can be well characterized.

Due to the versatility and huge representation capacity of
the deep learning (DL) model, while hyperspectral image
classification is similar to traditional computer vision tasks,
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DL-based methods have been introduced into this field [31],
[32]. Generally, PCA is first applied in the preprocessing
stage, and the compressed spectral and spatial information
is exploited by DL model [33]. In [34], an effective classi-
fication framework that combined deep belief network (DBN)
with active learning is developed. The weighted incremental
dictionary learning (WI-DL) algorithm is designed to actively
select additional representing samples from the unlabeled
data set, and DBN provides the final prediction. Meanwhile,
Zhong et al. [35] designed a diversified DBN to improve
the classification performance by regularizing the pretrained
procedure of DBN. In [36], the balanced local discriminant
embedding (BLDE) and a simple CNN model are integrated
to extract spectral and spatial features, respectively. In par-
ticular, compared with the 2-D operator that only exploits
the spatial domain, the 3-D operator can better characterize
the spatial–spectral correlation of the hyperspectral image.
Zhang et al. [37] utilized a 3-D generative adversarial net-
work (GAN) to construct a spectral–spatial classifier. The
GAN framework uses a CNN to discriminate the inputs (dis-
criminative model), and another CNN is designed to generate
the fake input (generative model). Li et al. [38] introduced
3DCNN that is mainly designed for video-based applications
to learn the local signal change in the spectrum and spatial
dimensions without any data transformation.

Since each spatial pixel in the hyperspectral image
corresponds to a spectral vector with hundreds of bands,
the DL methods that deal with sequential data can naturally be
employed. Hu et al. [39] proposed a deep convolutional net-
work that tries to use a 1-D convolution operator to exploit the
deep feature of the spectrum. Besides, Zhu et al. [40] designed
a 1-D GAN for hyperspectral image classification. Xue et al.
[41] combined the CapsNet with Triple-GANs to form a
classification scheme where Triple-GANs expand the training
set by generating additional virtual sample. Furthermore, 1-D
and 2-D CapsNet are, respectively, adopted to extract the
spectral and spatial features at the shallow layer, and the
classification is carried out by a dense capsule layer [42].
Especially, the recurrent neural network (RNN), which is a
powerful tool for sequential data processing, such as speech
recognition [43], machine translation [44], and video behavior
recognition [45], has recently been incorporated for hyper-
spectral image classification. Wu and Prasad [46] proposed
a deep convolutional RNN for hyperspectral image classifi-
cation, in which a convolutional operator is used to extract
middle-level invariant local features from the original spectral
sequence and then recurrent layer extracts contextual feature
from the output of convolution layer. Besides, Xu et al. [47]
integrated RNN with 2DCNN to build a uniform framework
where RNN is only applied to the spectral domain. Concretely,
the spectrum is divided into several segments with equal length
and entered into RNN, while 2DCNN is responsible to acquire
the spatial information. Although most DL-based methods
described earlier have obtained good performance, a large
number of manually labeled samples is usually required to
well train the model (for example, 2DCNN model contains
more than 60 000 parameters for the classic Indian Pines
hyperspectral image data), which is unrealistic in practical

applications and significantly weakens the practicability of the
DL-based model.

With respect to the small training sample issue of
hyperspectral image, many DL-based methods have been
proposed in recent years. In MugNet [48], rolling guidance
filtering was adopted as the preprocessing step to avoid the
infection of noise and small meaningless detail. In the follow-
ing, PCANet [49] was used to integrate the multigrain and
semisupervised information. In [46], the superpixel segmenta-
tion and Dirichlet process mixture model were used to produce
the pseudolabels, and a semisupervised CNN was trained with
these pseudolabels. Then, the classifier was fine-tuned with
the truth labels. Liu et al. [50] adopted the deep model to
map the sample vector into a metric embedding and used the
Euclidean distance to measure the distance between them. The
nearest neighbor classifier is utilized to reduce the parameter
size of the model. Alternatively, the lightweight DL model
can be a feasible way to tackle the small training sample
issue. Su et al. [51] simply extended the 2-D depthwise
separable convolution to 3-D convolution to construct a deep
lightweight model, while Zhang et al. [52] designed a special
3-D depthwise separable convolution for hyperspectral image
classification, and its lightweight model is trained with transfer
learning. In [53], squeeze and excitation operations were used
to discard the meaningless features so that the kernel number
of the following convolution can be correspondingly reduced.
Liu et al. [54] proposed a lightweight model named SG-CNN
that applied group convolution and channel shuffle to reuse
the extracted features.

In this article, we aim to construct a lightweight
convolutional neural network (LWCNN) for hyperspectral
image classification to deal with the small sample set problem
and increase the generalization ability of the DL model.
First, spatial–spectral Schroedinger eigenmaps (SSSE) oper-
ator [55], which is derived from Laplacian eigenmaps (LE),
is employed to extract the fused spectral–spatial features from
the raw hyperspectral imagery, and the joint spectral–spatial
information can be well concentrated on the pixel level.
Second, a 1-D convolution operator is utilized rather than the
traditional 2-D one, and thus, the number of parameters can be
greatly reduced. Meanwhile, a dual-scale convolution (DSC)
module with two receptive fields is introduced to extract
the discriminative features from the SSSE encoding vectors.
Furthermore, in order to obtain the hierarchical features of
data representation, a series of the designed DSC modules
is successively applied. Third, inspired by the DL model in
natural language processing [56], the feature vectors obtained
from all DSC layers are separately filtered by a new bichannel
fusion (BCF) module instead of simply fusing the features in
elementwise form, which could achieve the weighted fusion
and encode the contextual information inside DSC features
simultaneously. Finally, the filtered features are concatenated
together and put into a global average classifier to obtain the
classification score. To make the proposed LWCNN frame-
work easier to be understood, Fig. 1 shows the sketch map,
in which the Indian Pines hyperspectral image is taken into
account. In particular, the major contributions of our work are
summarized as follows.
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Fig. 1. Flowchart of the proposed LWCNN for hyperspectral image classification.

1) First, the 1-D vector input of the DSC module can not
only provide a lightweight way to address the small
sample set problem but also ensure the efficiency of
the proposed method. Meanwhile, layer normalization
(instead of batch normalization) is employed to com-
ply with the small sample set scenario, and thus, the
statistical significance of feature can be well reserved.

2) Second, concerning the BCF module, a gate recurrent
unit (GRU) is incorporated to exploit the potential
contextual information of DSC feature vectors, while
the convolution operator is utilized to establish the
linear combination of features, making the subsequent
classification procedure more elegant. Through concate-
nating all the bichannel features together, the feature
representativeness can be largely enhanced.

3) Third, the SSSE operator is introduced to reduce the
dimension of the hyperspectral image, which can effec-
tively represent the joint spectral–spatial structure of
objects, and thus, the following 1-D oriented feature
extraction procedure can be more distinct. Besides,
a global average pooling scheme is introduced in the
classification stage to increase the robustness of the
proposed framework.

The rest of this article is organized as follows. Section II
briefly introduces Schroedinger eigenmaps (SE), convolution
neural network, and RNN. The proposed MLCNN framework
is presented with four parts in Section III. The hyperspectral
image data sets used in this study and the experimental results
are provided in Section IV. Conclusions are summarized in
Section V.

II. RELATED WORKS

A. SSSE

LE [57], [58] is a nonlinear dimensionality reduction
method and could construct the intrinsic geometric manifold
structure with high efficiency. It considers the manifold struc-
ture in high-dimensional space and preserves local neighbor-
hood information in low-dimensional space. However, it only
reflects one aspect of hyperspectral image (either spectral or
spatial information); thus, the SSSE is introduced [59].

Let X ∈ R
H×W×B denote the original hyperspectral data

cube, where H and W are the height and width in the scanned
scene, while B is the number of bands. The SSSE operator
is a generalization of LE and incorporates a potential matrix
with LE. Especially, the SSSE procedure can be depicted as
follows.

1) Construct an adjacency graph G from X. If xi and x j

are in spatial neighborhood, then there is an edge Gi, j

between the two points, i.e., Gi, j is set as 1 (otherwise,
it equals to zero). The neighborhood relation is decided
by ε-neighborhoods, i.e., the location distance between
two points is less than a predefined threshold ε.

2) Calculate the weight matrix W and the Laplacian
matrix L. Heat kernel is a commonly used method to
compute the weight

Wi, j =
{

exp(−‖xi − x j‖2/σ), Gi, j > 0

0, otherwise.
(1)

It is obvious that the spectral information is fully utilized
to characterize the similarity of pixels. Furthermore,
a diagonal matrix is defined as Ei,i =∑ j Wi, j , and the
Laplacian matrix L is simply computed as L = E − W.

3) Compute the cluster potential matrix V. Here, the spatial
locations of pixels are taken into account, and Vi, j is
calculated as

Vi, j =
∑

x j ∈Nε (xi )

S(i, j ) · γi, j · exp

(
−
∥∥xp

i − xp
j

∥∥2

σ

)
(2)

where xp
i and xp

j are the spatial positions of xi and
x j respectively. S is a sparse matrix that describes the
relation of spatial position of pixels, and parameter γ
represents the correlation of pixels in neighborhood [59].

4) Implement the feature extraction of SSSE. The
eigenvalues and eigenvectors of the following formula
are investigated:

(L + αV)f = λEf (3)

where α is a balance coefficient. In contrast to the
PCA method, here, the eigenvectors corresponding
to the smallest K eigenvalues are reserved, and
F = [f1, f2, . . . , fK ] ∈ R

H W×K is the obtained feature
data. It is clear that F can be reshaped into 3-D form,
denoted as H ∈ R

H×W×K .

Fig. 2 shows the basic procedure of SSSE.

B. CNN

The conventional CNN (as shown in Fig. 3) mainly relies
on two components, convolution layer and pooling layer,
to extract hierarchical deep feature automatically, and the
dropout technique is utilized to alleviate the overfitting phe-
nomenon. The pooling layers have two main functions, which
can not only reduce the map size quickly and improve com-
putation efficiency but also enlarge the receptive field of the
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Fig. 2. SSSE.

Fig. 3. Structure of CNN.

kernels in the input or feature maps (that come from the
previous convolution layer).

The number of layers in the model is an important factor
that controls the learning capacity of CNN. The kernels in
the shallow layer are mainly responsible for detecting texture
features, while the convolution operators in the deeper layer
use this shallow information to build up abstract feature maps.
As the layers get deeper, the features would become more
abstract and have stronger representation ability.

C. RNN

RNN has a self-loop connection and maintains an internal
hidden state. At each time step t ∈ {1, 2, . . . }, for an input
vector et , the RNN network will output a vector ot that
characterizes the contextual information. Meanwhile, a hidden
state vector ht is also taken into account and enters into the
network again with the new input in the next step. In this way,
RNN can learn the related features between the items of the
input sequence. The procedure of RNN can be formulated as
follows:

ht = F(Ue · et + Uh · ht−1), t = 2, . . . (4)

ot = F(Uo · ht ) (5)

where Ue, Uh , and Uo are the transformation matrices of the
corresponding variables, respectively, and can be learned in
the training process of the RNN model. h1 is randomly ini-
tialized by a Gaussian distribution. Besides, F is the nonlinear
activation function, such as Tanh, Sigmoid, and ReLu.

III. PROPOSED METHOD

In this section, the proposed LWCNN framework is depicted
in four modules: SSSE-based preprocessing, DSC, BCF, and
global average pooling.

A. SSSE-Based Preprocessing

The data samples of the hyperspectral image observed from
the real world normally have high spectral dimensionality,
whereas large redundancy and noisy bands can impact the
efficiency of data processing. Meanwhile, CNN-based models
generally need more labeled samples to well train the enor-
mous parameters with the raw hyperspectral image, so dimen-
sionality reduction is usually applied in advance. Although
there are numerous dimensionality reduction methods in the
literature, the SSSE is incorporated in our work, which is
mainly due to the following two reasons.

1) On the one hand, the SE is calculated on the graph
that is constructed from the spectral information of
the hyperspectral image. On the other hand, the spatial
proximity is encoded with a cluster potential matrix that
is derived from the LE operator (a detailed description
can be found in Section II-A and Fig. 2). Therefore,
the joint spatial–spectral features can be adequately
exploited by the SSSE method, and the performance of
the proposed LWCNN framework can be guaranteed.

2) Different from the other methods (such as the 3-D
filtering-based ones) that should extract a huge amount
of features to characterize the spatial–spectral structure
of the hyperspectral image, the SSSE operator maps
raw hyperspectral image into low-dimensional space
and preserves the local Euclidean characteristic of data.
Since the dimensionality of the achieved SSSE features
is significantly decreased, the parameter volume needed
to be tuned in the LWCNN model is correspondingly
compressed, and thus, the robustness of the proposed
method can be enhanced. Meanwhile, the computational
load and storage requirements are also reduced.

As presented in Section II-A, the SSSE operator is directly
applied to the raw hyperspectral image X ∈ R

H×W×B , and
the achieved SSSE feature is denoted as H ∈ R

H×W×K ,
where K is the number of reserved features. Since K is much
smaller than B , the data volume of SSSE feature H is greatly
decreased, and the network structure of the proposed LWCNN
model is simplified.

B. DSC
After the spatial–spectral related information has been

well concentrated in the pixel level of SSSE features, only
1-D-oriented signal convolution is considered rather than 2-D
operation, which can greatly decrease the model complexity,
and the performance can also be improved. Before present-
ing the carefully designed DSC module, some mathematical
notations are explained. Based on the SSSE feature cube
H ∈ R

H×W×K achieved earlier and suppose there are C
materials existed in the scene, A ∈ R

K×n denotes the training
set, where n is the number of training samples. Generally,
in order to accelerate the learning efficiency of CNN-based
methods, the training set is randomly divided into J subgroups
given a predefined batch size S, i.e., J = �n/S�, where
�·� is the rounding up operator. Hereafter, the description
of the proposed LWCNN framework is from group A j ∈
R

K×S, j = 1, . . . , J viewpoint rather than a single vector.
Besides, small Greek letters, such as δ and θ , are used to stand
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Fig. 4. DSC module. Note that the input of the two branches Pθ and Qξ is
the extracted SSSE spectral feature of each spatial pixel, and the kernel size
of the second branch Qξ is N × 3, which aggregates the spectral neighboring
information of feature vector.

for the parameters of each module, which can be learned in
the training process.

As shown in Fig. 4, the DSC module Dδ mainly contains
two separate branches, including the purified feature Pθ and
aggregated feature Qξ , which, respectively, aims to use the 1-D
kernels of the different receptive field to enhance the difference
of various samples. Especially, in the first branch Pθ , the size
of the kernel in filter P is set to be one (P ∈ R

N×1, where N
is the filter size) so that the filtering operator could focus on
the single location of all channels and not be interfered by the
spectral neighborhood. Alternatively, the size of the kernel in
filter Q of the second branch Qξ is set as three (Q ∈ R

N×3)
so that our model has the ability to aggregate the spectral
neighborhood information of feature vector. Mathematically

B j = P ⊗ AT
j , j = 1, . . . , J (6)

C j = Q ⊗ AT
j , j = 1, . . . , J (7)

where ⊗ is the convolutional operator and (·)T is the matrix
transformation. As a result, the dimensions of convolutional
results B j and C j are the same and become S × N × K .

After that, the sample normalization procedure is conven-
tionally applied before the ReLu activation function to avoid
gradient vanishing phenomenon. Generally, the normalization
is carried out on the first dimension, which is just the so-called
batch normalization and can be formalized as follows:

BB N
j = β

B j − mean(B j , 1)

std(B j , 1)
+ η, j = 1, . . . , J (8)

where mean(B j , 1) and std(B j , 1), respectively, denotes the
mean value and standard variation of B j along the first
dimension, and β and η are two weighting parameters. It is
obvious that the values of β and η have an important influence
for the learning procedure. As far as the small sample set
problem is concerned, since the batch size S could not be large
enough, the stability and preciseness of the both parameters
cannot be ensured under batch normalization.

Fortunately, inspired by nature language processing,
the layer normalization method is incorporated in our work,

Fig. 5. BCF module.

which can be described as

BL N
j = β

B j − mean(B j , 3)

std(B j , 3)
+ η, j = 1, . . . , J (9)

where mean(B j , 3) and std(B j , 3), respectively, are the oper-
ations of calculating mean value and standard variation of
B j along the channel dimension K . It can be seen from (9)
that the operations of mean(B j , 3) and std(B j , 3) in layer
normalization only focus on one sample at a time, and thus,
each sample has an independent description and is not affected
by the batch size. Since the samples belonging to the same
category generally have stable mean values and standard
deviation, the parameters β and η in the layer normalization
can be estimated more precisely. A numerical comparison of
the two normalization methods is provided in Section IV. The
layer normalization of C j can be computed in the same way,
which is expressed as CL N

j .
After applying the ReLu activation function on the two

normalized feature cubes (BL N
j and CL N

j ), they are simply
concatenated together to extract the dual-scale features, and
the DSC feature D j ∈ R

S×2N×K is obtained

D j = cat
(
ReLu

(
BL N

j

)
, ReLu

(
CL N

j

)
, 2
)
, j = 1, . . . , J.

(10)

Meanwhile, in order to acquire sufficient hierarchical features
of data structure, the DSC module is successively employed
for three times (the number of DSC module is analyzed
in Section IV), as shown in Fig. 1, and the DSC features
D(i)

j , i = 1, 2, 3 are achieved with different parameters
δi , i = 1, 2, 3.

C. BCF

It is clear that the volume of features extracted by the
abovementioned DSC module D(i)

j , i = 1, 2, 3 is huge. When
it comes to the small sample set problem, the large number of
parameters in the classifier will make the classification model
very hard to train and lead to serious overfitting. On the other
hand, in most conventional CNN model, such highly abstract
features obtained from previous convolutional modules are
flattened and then concatenated together to construct a long
vector before entering into the classifier, which could lose the
contextual information between features.

To largely reduce the number of parameters in the
classification phase and increase the learning efficiency as
well, a BCF Mρ module is proposed to exploit the contextual
information between features and accomplish the weighted
mergence of representative information. The structure of BCF
is shown in Fig. 5.
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Fig. 6. Detail structure of the context branch in the BCF module.

Fig. 7. Detail structure of the mergence branch in the BCF module.

1) Context Branch: From the natural language processing
viewpoint, the features extracted by the DSC module can be
regarded as a set of word embedding, and the potential contex-
tual information between the features should be investigated
to enhance the discriminative ability. As shown in Fig. 6,
the DSC features D j ∈ R

S×2N×K , j = 1, . . . , J successively
enter into a GRU at each time step. Consequently, the hidden
status vector is used to encode all the expected contextual
information, which usually has the size of 80% of the input
size K , i.e., L = �0.8K �. It can compress the most useful
information and discard the redundant ones as well. Similarly,
the hidden status vector of GRU in the last step will be
managed by the abovementioned layer normalization, and the
output R j ∈ R

S×1×L, j = 1, . . . , J is the extracted context
feature.

2) Mergence Branch: Since the importance of features
extracted by the DSC module is different from each other, it is
desirable to introduce a weighted representation rather than
taking all the features into account equally. More precisely,
instead of simply flattening or elementwise adding the DSC
features, the DSC features D j , j = 1, . . . , J are convolved
with a filter (the kernel size is 1) to change the number of
the feature vector, which equals to the length of hidden status
vector of the context branch (i.e., L). Global average pooling is
subsequently applied to each individual feature and transforms
all of them into a 1-D vector, which is shown in Fig. 7, and the
obtained mergence feature is W j ∈ R

S×1×L, j = 1, . . . , J .
The features obtained from the contextual module R j ∈

R
S×1×L, j = 1, . . . , J and the mergence module W j ∈

R
S×1×L, j = 1, . . . , J are stacked together to formulate the

output of the BCF module

M j = cat(R j , W j , 2), j = 1, . . . , J. (11)

In order to make full use of the abstract information obtained
from the three DSC modules D(i)

j , i = 1, 2, 3, an individual
BCF module is configured for each DSC module, and all the
outputs of these three BCF modules M(i)

j , i = 1, 2, 3, are
concatenated together (as shown in Fig. 1)

Mall
j = cat

(
M(1)

j , M(2)
j , M(3)

j , 2
)

(12)

Fig. 8. Global average pooling classifier.

where Mall
j ∈ R

S×6×L is the input feature for the following
classification modules.

D. Global Average Pooling Classifier

Conventional CNN uses a convolution operator to learn
massive abstract feature maps from the input data, and then,
the fully connected layers, also called dense layers, are used
to map the feature map into the sample label space whose
dimensions are equal to the number of class. Due to the
dense connection, the fully connected layers contain a huge
number of parameters and are prone to overfitting, especially
in the case of a small sample set. In addition, the strong
mapping capacity of the fully connected layers is excess
for the classification task with limited labeling samples, that
is to say, there are a lot of redundant parameters in dense
layers, which could increase the cost of learning process and
size of the model. Fortunately, the global average pooling
classifier [60] that integrates the convolution operation and
global average pooling can be a reasonable solution because
the characteristic of shared weights and biases could greatly
decrease the volume of parameters in the model. Fig. 8 shows
the detailed structure of the global average pooling classifier.

To easily demonstrate the classification procedure, one
training sample mi ∈ R

6×L , i = 1, 2, . . . , S, is picked out
from the batch Mall

j . First, in our work, the kernel size of
convolution is fixed to 1, and the convolution operation is
equivalent to the linear combination of the features. Recall
that C is the number of categories, and the kernel number is
equal to C . The set of convolution operators is formalized as
� = {
1, . . . , 
C }. Consequently, for the cth kernel 
i ∈ R

6,
the convolutional value of mi is calculated as follows:

zc = mT
i × 
c, c = 1, . . . , C. (13)

All the convolution results zc ∈ R
L of these kernels are

stacked, normalized, and activated to form the score features
Z = [zT

1 , . . . , zT
C ] ∈ R

C×L , which represents the classification
confidence information, and each feature zc, c = 1, . . . , C in
Z corresponds to one class.

Second, the global average pooling is developed to calculate
the average of each individual feature. It brings a strong
prior into the network without extra parameters that the
average of each feature represents the classification probability
confidence, which enforces the previous convolution operation
to map high-level abstract feature into category space. With
respect to the training stage, the softmax function [61] accepts
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the output of the layer and produces the category probability,
while the loss value of the model is calculated as

[ŷ1, . . . , ŷC ] = softmax(mean(Z)) (14)

yc =
{

1, Class(mi ) = k

0, other,
c = 1, . . . , C (15)

Loss(mi ) = −
C∑

c=1

yc log(ŷc) (16)

where mean(Z) outputs the mean value of each column of Z,
and the label of mi is supposed to be k. yc(c = 1, . . . , C)
denotes a one-hot vector of mi , while ŷc(c = 1, . . . , C) is the
classification probability confidence. The Loss(mi ) is used to
compute the gradient and update the parameters of the whole
network.

Once the training process of our LWCNN model is accom-
plished, the label of a test sample y ∈ R

K is predicted as

Class(y) = arg max
c∈{1,...,C}

(mean(Z)). (17)

Finally, the time complexity of the proposed LWCNN
method is analyzed, which can be roughly divided into three
parts. The first part is related to the feature decomposition
of SSSE, which is O((XY )3) (X and Y denote the two
spatial dimensions of the hyperspectral image). The second
part is related to the DSC module, which is O(K ) (K is the
number of reserved components in the SSSE method). The
third part is related to the BCF module, which is O(K 2).
Especially, it can be easily found that the SSSE procedure
is unrelated to the training set (which is computed only
once), while the parameter K is far less than the spatial
coverage of hyperspectral image X×Y ; therefore, the proposed
LWCNN approach is applicable to hyperspectral image with
large spatial size.

IV. EXPERIMENT

A. Experiment Data Sets

The first data set is the Indian Pines data set that was
acquired by the AVIRIS sensor and contains 10 366 labeling
pixels with 16 ground-truth classes. The spatial resolution is
as low as 20 m per pixel, and the spatial dimension of the
data is 145 × 145. It contains 2/3 agriculture and 1/3 forest or
other natural perennial vegetation. Since the data are collected
in June 1992, some of the crops present in the scene, such
as corn and soybean, are in the early stages of growth with
less than 5% coverage. Within the original 224 bands, four
zero bands and 35 lower SNR bands affected by atmospheric
absorption have been discarded in the experiments; thus,
the rest 185 bands are preserved. Its ground-truth and detailed
information per class are shown in Fig. 9 and Table I.

The second hyperspectral data set was acquired in the area
of Pavia University (PaviaU), Northern Italy, by using the
ROSIS sensor during a flight campaign. This data set consists
of 610 × 340 pixels, and 42 776 samples are labeled from
nine different classes. The geometric resolution of the data
set is as high as 1.3 m. The raw hyperspectral image data
contain 115 spectral bands. After removing the 12 noisy bands,

Fig. 9. (Left) False-color image and (Right) ground-truth map of the Indian
pines data set.

TABLE I

LAND COVER CLASSES WITH NUMBER OF SAMPLES
FOR THE INDIAN PINES DATA SET

Fig. 10. (Left) False-color image and (Right) ground-truth map of the PaviaU
data set.

the remaining 103 channels are processed. Fig. 10 and Table II
list the details of the data set.

The third hyperspectral data set was gathered by AVIRIS
sensor over Salinas Valley, CA, USA, and consists of
512 × 217 pixels with a high spatial resolution of 3.7 m per
pixel, as shown in Fig. 11. After 20 noisy bands are discarded
from the original 224 bands, including bands [108–112],
bands [154–167], and band 224, 204 bands are reserved. The
ground-truth map contains 54 129 labeling samples belonging
to 16 classes [see Table III].

B. Parameter and Module Analysis

In this section, we will first analyze the parameter setting
for the proposed LWCNN method. Although most parameters
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TABLE II

LAND COVER CLASSES WITH NUMBER OF SAMPLES
FOR THE PAVIAU DATA SET

Fig. 11. (Left) False-color image and (Right) ground-truth map of the Salinas
data set.

TABLE III

LAND COVER CLASSES WITH NUMBER OF SAMPLES

FOR THE SALINAS DATA SET

contained in the model, including δ in the DSC module, ρ in
the BCF module, and � in the global average pooling classi-
fier, can be learned in the training procedure (all the parameters
are optimized by RMSprop algorithm [62]; learning rate is
set to 0.001, while the coefficient of weight decay is 0.003.),
there are some hyperparameter (such as the number of DSC
modules, the batch size S, and the filter size N in the DSC
module) that should be carefully concerned in advance. It is
worth pointing out that the number of reserved features K
in the SSSE operation is automatically decided in [59]. Here,
the batch size S is set as 64 for all experiments by experience.

It can be easily observed from Fig. 1 that the feature
extractor in the LWCNN framework is constructed by stacking

Fig. 12. Proposed LWCNN framework with different number of DSC
modules on the three hyperspectral data sets. (a) OA. (b) Kappa coefficient.

several DSC modules; hence, the amount of DSC modules
will have a crucial impact on the representative capacity of
the proposed method. Furthermore, increasing the number of
DSC modules can generally improve the performance of the
proposed model, but more DSC modules in the model will
be prone to overfitting in the case of a small sample set, and
the computational load is also increased. Fig. 12 evaluates the
proposed LWCNN framework with a different number of DSC
modules on the three hyperspectral data sets. Here, five labeled
samples per class are randomly picked out from the labeled
set to build up a small training set, and the remaining ones
are used for testing. All the experiments are repeated for ten
times, while both the mean and standard variation are reported.
Besides, overall accuracy (OA) and kappa coefficient [63] are
adopted to quantify the performance.

It can be found from Fig. 12 that the LWCNN model with
three DSC modules has achieved the best performance with
the Indian Pines and Pavia University data sets. For the Salinas
data set, the best choice for the number of DSC modules
is 2, which is slightly better than that of 3. For the sake of
consistency and the generalization of the proposed LWCNN
model, the number of DSC modules is set as 3, as shown
in Fig. 1. Moreover, the filter size N in each DSC module is
kept the same for simplicity and set as 10.

Second, the power of three important steps in our work,
including the DSC module, BCF module, and layer normal-
ization, is extensively studied. Accordingly, three methods are
carefully formulated and presented in comparison with the pro-
posed LWCNN approach. More precisely, in order to analyze
the role of the DSC module, the SSSE-GAPC is constructed by
removing both the DSC and BCF modules from the LWCNN
model, and the pixel vector of SSSE feature directly enters
the global average pooling classifier to produce the predicted
probabilities. Meanwhile, with respect to the BCF module,
the LWCNN-noBCF model is considered by removing the
BCF module from the proposed framework, and the features
obtained from DSC modules directly enter the global average
pooling classifier without any dimension reduction processing.
Besides, since the normalization procedure is crucial for the
CNN-based system to prevent degeneration of the model,
LWCNN-BN is taken into account, which replaces all the layer
normalization of our proposed LWCNN method with batch
normalization.
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TABLE IV

CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS
ON THE THREE HYPERSPECTRAL DATA SETS

Table IV lists the detailed classification performance of
four compared methods on the three hyperspectral data sets.
Except for the two metrics, both OA and kappa coefficient,
the average accuracy (AA) is also taken into consideration.
Here, the experimental setting is the same as earlier, i.e., five
labeled samples per class are taken as the training set, and the
experiment is repeated ten times. It can be found from Table IV
that the accuracy of the LWCNN-noBCF model is consider-
ably higher than SSSE-GAPC for all the three hyperspectral
data sets, validating the significance of the deep representative
features obtained by the powerful DSC modules. Furthermore,
the performance of our LWCNN framework is substantially
improved compared with the LWCNN-noBCF, indicating the
importance of the potential contextual information extracted
by the novel BCF module. Besides, layer normalization in the
proposed LWCNN model can bring a continuous improve-
ment over the batch normalization in LWCNN-BN, show-
ing the rationality of the incorporated layer normalization
scheme.

C. Classification Performance

To illustrate the advantage of the proposed LWCNN
framework for hyperspectral image classification, two
state-of-the-art classifiers and three DL-learning model pro-
posed recently are taken into comparison, which is described
as follows.

1) Generalized Composite Kernel (GCK): Li et al. [64]
constructed a framework of nonparameter GCKs to
extract the spatial–spectral information from hyperspec-
tral image. Logistic regression is used as the classi-
fier, and the spatial feature is obtained from extended
multiattribute profiles.

2) Morphological-Based K-Nearest Neighborhood
(MOR-KNN): Morphological features are constructed
for hyperspectral image based on the operation of
openings and closings with a structuring element of
increasing size, and the KNN classifier is engaged for
classification.

3) 2DCNN: The typical convolution neural network,
i.e., LeNet [65], was extended for hyperspectral image
classification [39].

4) 3DCNN: To the best of our acknowledge, [38] is the
first work that introduced the 3DCNN for hyperspectral
image classification. There are two 3-D convolution

TABLE V

PARAMETER SIZE OF FOUR DL-BASED METHODS ON THREE
HYPERSPECTRAL DATA SETS

layers in this network without a pooling layer to exploit
the joint spatial–spectral information. The classification
was performed by a fully connected layer and softmax
function.

5) Spectral–Spatial Long Short-Term Memory
(SaSeLSTM): SaSeLSTM [66] adopted the LSTM
to develop a feature extractor for hyperspectral image.
For the spectrum, the values of the spectral pixel vector
enter into the spectral LSTM one by one. Alternatively,
PCA was applied. The first component was separated
into several vectors and entered into spatial LSTM.
Each LSTM branch will produce a score and decision
procedure fuses both score vectors and provide a
classification probability.

6) LWCNN-RAW: The raw spectral data are directly used
without applying the SSSE procedure.

7) LWCNN-PCA: PCA is used to replace the SSSE
procedure to reduce the spectral dimension.

It is worth pointing out that the compared methods used in the
experiments follow their original paper. Especially, 2DCNN
and LWCNN-PCA use PCA to reduce the dimension, while
both the raw data and PCA-reduced features are adopted
for SaSeLSTM. The MOR-KNN utilizes the morphological
feature. For the rest compared methods, including GCK,
3DCNN, and LWCNN-RAW, the original raw data are taken
as the input.

Before presenting the detailed experimental results,
the parameter size of four DL-based methods (including
2DCNN, 3DCNN, SaSeLSTM, and our LWCNN) on three
hyperspectral data sets is summarized in Table V. The first row
of each method is the number of parameters, while the second
row is the memory space consumed by the parameters. It can
be clearly seen from Table V that the parameter size of the
proposed LWCNN framework is significantly smaller than the
other three methods, ensuring the efficiency and feasibility of
our method (this is the main reason that the proposed method
is named LWCNN).

With respect to the training set, a fixed number of samples
are randomly selected from each category, and the remaining
labeled samples make up the testing set. For the Indian Pines
hyperspectral image data set, the number ranges from 3 to
15 per class (since the 12th class only contains 20 labeled
samples). For the other two data sets, Pavia University and
Salinas, the number ranges from 3 to 20 per category. Simi-
larly, due to the weight initialization of the CNN network and
randomness influence of data sampling, each circumstance of
the experiment is repeated ten times, and both the mean value
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TABLE VI

CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE OBTAINED FROM THE INDIAN PINES DATA SET ON THE
TEST SET WITH FIVE LABELING SAMPLES PER CLASS AS TRAINING SET

TABLE VII

CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE OBTAINED FROM THE PAVIA UNIVERSITY DATA SET ON

THE TEST SET WITH FIVE LABELING SAMPLES PER CLASS AS TRAINING SET

Fig. 13. Indian Pines hyperspectral image: classification performance versus
number of labeled samples per class. (a) OA. (b) AA. (c) Kappa.

and standard deviation of OA, AA, and kappa coefficient are
reported.

Fig. 13 shows the classification accuracy of various
compared methods with a different number of labeled samples

Fig. 14. Indian Pines data set. Classification maps obtained by
(a) GCK (53.84%), (b) MOR-KNN (50.90%), (c) 2DCNN (41.37%),
(d) 3DCNN (14.52%), (e) SaSeLSTM (53.58%), (f) LWCNN-RAW (63.00%),
(g) LWCNN-PCA (62.78%), and (h) LWCNN (78.07%).

per class (3, . . . , 15) on the Indian Pines hyperspectral image.
Here, three metrics, including OA, AA, and Kappa coefficient,
are utilized. It can be seen from Fig. 13 that the trend
of the change in curves is basically the same, while the
increase in the number of labeled samples has a positive
impact on the classification performance. Especially, since the
spatial resolution of the Indian Pines hyperspectral image is
particularly low (i.e., 20 m per pixel), the 3DCNN method
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Fig. 15. Pavia University hyperspectral image: classification performance
versus number of labeled samples per class. (a) OA. (b) AA. (c) Kappa.

cannot extract informative features, resulting in a very poor
result. Alternatively, our LWCNN framework always provides
the best accuracy, validating the effectiveness of the pro-
posed method. Furthermore, the performance of LWCNN is
also better than LWCNN-RAW and LWCNN-PCA. This is
reasonable since the SSSE procedure not only reduces the
spectral dimension but also incorporates the spatial structural
information, demonstrating the necessity of the incorporated
SSSE procedure. When only five labeled samples per class
are used to build the training set, detailed results (including
the accuracy of each class and the three metrics) of the
eight compared methods are listed in Table VI. Similarly,
most of the accuracies achieved by LWCNN are higher than
the others. Besides, the classification maps of the compared
methods in a single experiment are also illustrated in Fig. 14.
It can be visually seen that the map obtained by our LWCNN
[see Fig. 14(h)] is more consistent with the ground-truth map
(see Fig. 9) than the others.

In the following, the Pavia University hyperspectral image
data set is considered. Fig. 15 provides the classification
performance of the compared methods with a different number
of labeled samples (3, . . . , 20). Different from the abovemen-
tioned Indian Pines data set, the performance of 3DCNN is
greatly improved since the spatial resolution of the Pavia Uni-
versity data set is much higher (1.3 m per pixel). Meanwhile,
because the small sample set problem is mainly concerned in
our work, the three CNN-based methods, including 2DCNN,
3DCNN, and SaSeLSTM, cannot be well trained, and the
performance of them is even lower than the traditional GCK
method. Alternatively, our LWCNN approach gives the best
results all the time. Similarly, Table VII presents a thorough
description of the classification performance of eight compared
methods with five labeled samples per class as a training set,
and our LWCNN approach provides the best accuracies in
most cases. Moreover, Fig. 16 exhibits the classification maps
of eight methods, and the proposed LWCNN method is more
advantageous than the compared ones.

Fig. 16. Pavia University data set. Classification maps obtained by
(a) GCK (71.80%), (b) MOR-KNN (59.77%), (c) 2DCNN (47.11%),
(d) 3DCNN (47.03%), (e) SaSeLSTM (40.30%), (f) LWCNN-RAW (72.08%),
(g) LWCNN-PCA (73.36%), and (h) LWCNN (81.88%).

Fig. 17. Salinas hyperspectral image: classification performance versus
number of labeled samples per class. (a) OA. (b) AA. (c) Kappa.

Finally, the Salinas hyperspectral image is investigated.
Fig. 17 shows the OA, AA, and kappa values of the compared
eight methods with a different number of training samples
(3, . . . , 20). Since the spatial distribution of the data is very
regular (as shown in Fig. 11), the performance of all methods
is better than the abovementioned two data sets. Likewise, our
LWCNN always achieves the highest accuracy. Table VIII and
Fig. 18, respectively, summarizes the classification accuracy
of eight methods when only five labeled samples per class
are used for training, and our LWCNN model exhibits the
best results in most cases, indicating the superiority of the
proposed LWCNN approach.
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TABLE VIII

CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE OBTAINED FROM THE SALINAS DATA SET ON THE TEST SET
WITH FIVE LABELING SAMPLES PER CLASS AS TRAINING SET

Fig. 18. Salinas data set. Classification maps obtained by (a) GCK (82.84%),
(b) MOR-KNN (79.72%), (c) 2DCNN (46.09%), (d) 3DCNN (77.34%),
(e) SaSeLSTM (64.21%), (f) LWCNN-RAW (87.74%), (g) LWCNN-PCA
(86.98%), and (h) LWCNN (89.91%).

V. CONCLUSION

In this article, we aim to construct an LWCNN to tackle the
small sample set problem of hyperspectral image classification.
By incorporating the SSSE operation, the parameter size has
been substantially reduced. Meanwhile, multiple DSC and
BCF modules have been carefully designed and connected,
and the discriminative ability of the extracted features can
be ensured. Besides, the batch normalization is replaced by
the layer normalization scheme, and a global average pooling

classifier is imported; hence, the classification performance can
be further improved.

In the experiments, the power of three crucial steps
in the proposed LWCNN framework, including the DSC
module, BCF module, and layer normalization, is val-
idated. Moreover, a number of state-of-the-art methods,
including GCK, MOR-KNN, 2DCNN, 3DCNN, SaSeLSTM,
LWCNN-RAW, and LWCNN-PCA, are taken into consider-
ation, and the results consistently demonstrate the advantage
and robustness of the proposed LWCNN approach, especially
when the training set is small.
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