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Abstract— With its strong capability in modeling long-range
dependencies, the Transformer achieves competitive performance
in hyperspectral image (HSI) and multispectral image (MSI)
fusion. However, existing Transformer-based methods face the
trade-off between receptive field size and computational efficiency
when dealing with spatially non-local features. Furthermore, the
Transformer captures deep spectral relationships by modeling
pairwise channel interactions. This global interaction may over-
look features that contribute little to the overall context but
are critical locally, thus affecting the accurate understanding of
HSI content. To overcome these challenges, we propose a novel
local–global collaborative network with Transformers (LGCT)
specifically designed to achieve high-quality HSI reconstruction.
The proposed LGCT includes two inverse feature streams to
establish multiscale deep representations of the HSI and MSI
features. The feature streams comprise collaborative Transformer
blocks (CTBs) explicitly designed for the spectral and spatial
domains. By combining global and local processing mechanisms,
the proposed CTBs can efficiently emphasize potential crucial
features that Transformer ignores when capturing deep spectral
and spatial relationships, thus enabling efficient modeling of
the spectral and spatial domains from details to the whole.
Furthermore, to enhance the reusability of multiscale enhanced
features from the spectral and spatial domains, a hierarchical
and symmetric strategy is adopted to progressively fuse them to
generate high-quality images. The results on both simulated and
real datasets demonstrate the superior performance of the pro-
posed method in terms of quantitative metrics and visual quality.
The code will be released at https://github.com/Hewq77/LGCT.

Index Terms— Attention mechanism, collaborative trans-
former, hyperspectral image (HSI), image fusion, local–global,
multiscale, multispectral image (MSI).

NOMENCLATURE

X, XU Degraded LR-HSI and its upsampled version.
X̃ Reconstructed HR-HSI.
Z Reference HR-HSI.
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Y Degraded HR-MSI.
H , W , b Height, width, and band number of the

degraded HR-MSI.
h, w, B Height, width, and band number of the

degraded LR-HSI.
FM , FH Outputs at different depths of Spa-CTB and

Spe-CTB.
C, C′ CB block layers in the encoding and

decoding stage.
FE , FD Outputs at different depths of encoding and

decoding stage.
TM , TH Inputs at different depths of Spa-CTB and

Spe-CTB.
T′

M , T′
H Outputs at different depths of Spa-RSA and

Spe-RSA.
M Window size in Spa-RSA.
N Number of groups in Spe-RSA.
YMl , YMg Local-aware and global-aware outputs

of Spa-RSA.
YHl , YHg Local-aware and global-aware outputs

of Spe-RSA.

I. INTRODUCTION

THE specificity of hyperspectral image (HSI) in the spec-
tral domain enables it to detect the composition of

materials more accurately, which is valuable in fields such as
geological exploration, agriculture, and environmental moni-
toring [1]. However, during the imaging process, to achieve
higher spectral resolution, the sensors face limitations in spa-
tial resolution, which significantly reduces the application of
HSI in many potential scenes [2], [3], [4]. Conversely, multi-
spectral image (MSI) has weaker object composition detection
capabilities but can provide more surface details, which
have less spectral information and higher spatial information.
To fully exploit the complementary properties of the HR-MSI
(HR-MSI) and LR-HSI (LR-HSI), HSI and MSI fusion have
become a research hotspot [5], [6], [7], [8]. This technology
aims to reconstruct images with rich spectral information and
higher spatial resolution by fusing the strengths of two types
of images. This method can accurately capture surface details
and features, providing more comprehensive data support for
downstream tasks such as classification, segmentation, and
target detection [9], [10], [11], [12].

Traditional fusion reconstruction methods focus on using
image prior information as constraints to guide the recon-
struction of spatial and spectral information in images.
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These include methods based on spectral unmixing, matrix
decomposition, and tensor decomposition [13], [14], [15].
These methods are inseparable from the mining of image
prior information and have strong interpretability. How-
ever, the disadvantage is that they often rely on artificially
designed prior knowledge and require parameter tuning
for different scenes, thus lacking adaptive optimization
capability.

With the rise of deep learning, data-driven end-to-end fusion
methods have gradually become dominant. These methods
can automatically learn implicit prior constraints from vast
amounts of data and often demonstrate superior performance
[16], [17], [18]. Due to powerful fitting capabilities, con-
volutional neural networks (CNNs) have been introduced to
fuse LR-HSI and HR-MSI. The related studies construct net-
works that include multiple stacked convolutional layers and
nonlinear activation functions to learn the optimal mapping
automatically between observed and target images [19], [20],
[21]. To obtain richer feature representations, the research idea
of multiscale fusion is integrated into HSI and MSI fusion
[22], [23], [24]. Additionally, the attention mechanism can
learn the correlation between different areas of cross-modal
data and achieve adaptive fusion among features, thus gaining
much focus [25], [26], [27]. Furthermore, to mitigate the
computational cost brought by complex network architectures,
researchers design lightweight models to realize efficiently
HR-HSI reconstruction [28], [29]. Moreover, to address the
issue of poor model interpretability, the idea of combining
traditional methods and CNNs is increasingly noticed in
HSI and MSI fusion [30], [31], [32], which contributes to
enhancing the understanding of the model decision process
and reconstruction results.

Despite achieving exciting results, CNN also has obvi-
ous shortcomings in HSI reconstruction. On the one hand,
while convolution operation is adept at capturing local spatial
features, it is difficult to fully exploit the high-dimensional
spectral information of HSI, which can lead to excessive
smoothing of spectral curves and result in distortion [33], [34],
[35]. On the other hand, CNN can only perceive the informa-
tion from a limited neighborhood. Although the receptive field
can be indirectly expanded by stacking convolutional layers,
it remains challenging to model the global spatial–spectral
contextual relationship. To overcome these issues above, the
Transformer has been introduced to process HSI tasks. As the
infrastructure of large language models, the Transformer
models the correlation between any two positional elements
directly through its self-attention mechanism [36]. Building
on the characteristics of HSI, researchers have also studied
combining graph theory and transformers to capture structural
correlations between pixels [37]. To fully adapt to the fusion of
HSI and MSI, some Transformer-based studies have designed
specific modules to capture the complex spectral and spatial
nonlinear relationships in HSI and MSI [38], [39], [40].
Furthermore, the integration of multiscale research ideas has
been explored to improve generalization ability, and these
methods [41], [42], [43], [44] enhance the details and spectral
fidelity of the reconstructed images by focusing on different
scales of spectral-spatial information at the data input level or
feature level.

However, the current research still faces two main chal-
lenges: 1) Transformer acquiring global dependencies brings
a large amount of computation. Window-based Transformers
capture spatial relations by focusing on pixels within a local
window, which significantly improves the computational effi-
ciency but also limits the receptive fields of attention. As a
result, valuable global information may be lost, which is not
conducive to modeling remote sensing scenes with irregular
distributions and 2) to ensure the modeling of long-range
spectral dependencies, the Transformer treats the entire spatial
extent in the spectral dimension as tokens and then uses
self-attention to capture inter-band correlations. However, this
may lead to the marginalization of critical local features.
During the global attention allocation process, the model
may tend to focus on features that are more important for
understanding the global content, while neglecting those that
contribute less to the overall context but are critical within
a local scale. Due to the diversity and complexity of HSI
and MSI fusion tasks, it is essential to model local similarity
blocks, which facilitate the capture of fine details and achieve
finer spectral fidelity.

Based on the above analysis, we propose a local–global
collaborative network with Transformers (LGCT) to realize
high-quality HSI reconstruction. Unlike other Transformer-
based methods, the proposed LGCT can efficiently model
spectral and spatial domain features from global and local
perspectives, complementing and enhancing the potential crit-
ical information that may be neglected in the spectral and
spatial domains. Specifically, the proposed LGCT employs
two inverse feature streams to adapt to the two modal inputs
of different resolutions and fully mine their multiscale fea-
tures. The spatial collaborative Transformer block (Spa-CTB),
which makes up the MSI feature stream, achieves enhance-
ment in spatial long-distance dependency capabilities at low
cost by exchanging tokens between windows of multihead
self-attention (MSA). The spectral collaborative Transformer
(Spe-CTB) is a crucial component of the HSI feature stream,
which enhances the perception of local critical information
in the spectral domain by grouping the spatial information in
the spectral dimension. Moreover, a hierarchical symmetric
strategy is designed to improve the reusability of multi-
scale enhanced features in the fusion process. In summary,
the main contributions of the article can be described as
follows.

1) A simple and effective fusion model for HSI and MSI,
named LGCT, is proposed. This model is designed to
comprehensively and efficiently capture both the local
details and global views of LR-HSI and HR-MSI. Addi-
tionally, a hierarchical symmetric strategy is designed
to progressively fuse multiscale spatial–spectral fea-
tures containing global–local representations to generate
high-fidelity and high-resolution images.

2) The proposed Spa-CTB adopts a cross-window shuf-
fling strategy to implicitly model global spatial features,
which breaks the trade-off between global feature
capturing ability and computational efficiency in Trans-
former. It allows the model to extend pixels dependen-
cies to a global scale without additional computational
costs while maintaining focus to local spatial details.
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Fig. 1. Comparison of computational efficiency and fusion performance of
deep learning-based methods on Houston dataset. The dataset and comparison
methods are described in Section IV. The horizontal and vertical axes denote
Flops and PSNR, respectively, and the circle size indicates the number of
parameters.

3) The Spe-CTB is proposed to obtain more comprehensive
spectral deep representation. Compared to directly com-
puting self-attention in the spectral domain, the proposed
Spe-CTB maintains awareness of global spectral features
while emphasizing overlooked local potential crucial
features in the spectral domain by grouping spatial
information of the spectral dimension.

4) Experimental results demonstrate that LGCT signifi-
cantly outperforms state-of-the-art (SOTA) fusion meth-
ods with lower computational load (as shown in Fig. 1).
Additionally, the LGCT also excels in real HSI recon-
struction.

The rest of the article is organized as follows. Section II
discusses related works, including the main research dynamics.
Building on this, Section III details the research methods
we propose, clarifying the theoretical basis and implementa-
tion steps of model construction. Following that, Section IV
presents the experimental results, where we present the quan-
titative and qualitative results of the experiment through data
analysis and charts. Finally, we provide a comprehensive
summary of the article and suggestions for future research
in Section V.

II. RELATED WORKS

In this section, we briefly review the research advancements
in HSI and MSI fusion, including conventional prior and
deep learning-based methods that have arisen in recent years.
We then introduce in detail the application of Transformer in
the fusion of HSI and MSI.

A. HSI and MSI Fusion

Fully exploiting the spectral–spatial relationship between
HSI and MSI is the crucial to achieving HSI fusion recon-
struction [30]. Traditional-based fusion methods focus on
using image prior knowledge to constrain the representation
of spectral–spatial information during HSI reconstruction,

including sparse prior, low-rank prior, and non-local similarity
prior [2], [8]. Yokoya et al. [45] proposed a method based
on coupled matrix decomposition to obtain the endmembers
and abundance information of the images to be fused, respec-
tively, and achieved HSI and MSI fusion by integrating this
information. On this basis, sparse regularity is introduced
to [46] for spectral unmixing to enhance the fusion effect.
Wu et al. [47] achieve constraints on reconstructed images
by mining the low-rank properties of HSI in the spectral
and spatial domains. Dian and Li [48] proposed a subspace-
based low-tensor multirank constraint method, which achieves
the reconstruction of HR-HSI by mining the correlation and
non-local similarity in the images. However, the traditional
reconstruction method requires several iterations to get the
fusion result and lacks adaptive optimal ability when facing
real scenes.

Capturing the spectral–spatial relationship between LR-HSI
and HR-MSI through deep networks has received widespread
attention. Zhu et al. [49] designed a lightweight network
to learn high-resolution and zero-centric residual images,
and reconstruct HR-HSI in a progressive manner. From the
perspective of spectral unmixing, Yao et al. [26] proposed
a coupled two-stream network with cross-modal attention
to improving the super-resolution fusion effect of HSI.
Wei et al. [30] designed a recursive residual network that
unfolds sub-optimization problems into network representa-
tions to achieve super-resolution reconstruction. Furthermore,
Dong et al. [50] proposed an iterable model-guided network
for end-to-end optimal reconstruction. Inspired by the prox-
imal gradient descent method, Xie et al. [31] introduced a
traditional image low-rank prior and proposed an interpretable
HR-HSI reconstruction network. Additionally, other network
paradigms such as graph neural network (GCN), generative
adversarial network (GAN), and autoencoder (AE) are con-
sidered to enhance the quality of fused images, as discussed
in [51], [52], and [53]. In summary, the above studies demon-
strate the effectiveness of deep networks in the fusion of
HSI and MSI, but there remains room for improvement in
understanding and fusing complex images.

B. Transformer Methods in HSI and MSI Fusion
The successful development of the Transformer in natural

language processing has made it a foundational architecture for
large language models [54]. Inspired by this, Transformer has
been applied to HSI and MSI fusion and has shown strong
effectiveness. Due to its unique self-attention mechanism,
Transformer can capture long-range correlations within images
over a wide range and effectively integrate spectral–spatial
information between different modality images, which is espe-
cially crucial for processing rich spectral information in HSI
and high-spatial resolution in MSI. In this field, Hu et al.
[55] designed a lightweight Transformer to implement image
fusion, which speeds up the convergence by focusing on the
learning in the residual domain. Chen et al. [39] proposed
a two-branch structure-based Transformer to establish the
information interaction between HSI and MSI. Furthermore,
Sun et al. [42] combined the multiscale idea to improve the
performance of HSI and MSI fusion. Pre-training and Shuffle-
and-Reshuffle strategies were also considered in [41] and [43].
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Fig. 2. Overall framework of the proposed LGCT. The framework can be divided into three stages from left to right: multiscale feature extraction, multiscale
feature symmetrical fusion, and reconstruction. “×1,” “×2,” and “×4” denote the three spatial scales in multiscale feature extraction. “Merge” denotes two
tensors with the same scale performing a connect operation along the channel axis. CBs denote convolutional blocks.

Wang et al. [40] and Ma et al. [44] introduced the idea
of cross-attention to the Transformer to facilitate inter-modal
information transfer. In [38], a bidirectional dilation Trans-
former was proposed to achieve image reconstruction in a
progressive manner. These studies have amply demonstrated
the unique advantages of Transformer in improving the quality
of HSI and MSI fusion. However, existing Transformer-based
methods suffer from mutual constraints between performance
and computational efficiency, as well as lacking the exploration
of global and local correlations in the spectral–spatial domain.

III. PROPOSED METHOD

In this section, we are dedicated to providing a detailed
description of the proposed LGCT. The overall pipeline of
LGCT will be presented first, and then the CTB for HSI and
MSI feature extraction will be expanded.

A. Overall Pipeline of LGCT
The proposed LGCT for HSI and MSI fusion consists of

three parts: multiscale feature extraction, multiscale feature
symmetrical fusion, and feature reconstruction, as shown in
Fig. 2. The implementation details of the proposed LGCT are
given in Algorithm.

1) Multiscale Feature Extraction: The degraded input
HR-MSI and LR-HSI are denoted as Y ∈ RH×W×b and
X ∈ Rh×w×B(H ≫ h, W ≫ w, B ≫ b), where (H, W, b)

and (h, w, B) denote the height, width, and band number
of the HR-MSI and LR-HSI, respectively. Initially, we use
bicubic interpolation to upsample the LR-HSI to obtain XU

∈

RH×W×B , and then concatenate it along the channel dimension
with Y to input into the MSI feature stream. We employ a
convolutional layer with a size of 3 × 3 to extract shallow
features. Afterward, these features are processed by Spa-CTB,
which consists of local and global branches, to obtain deep
feature maps FM . To obtain features at different scales, aside
from the first Spa-CTB, the resolution of the feature maps is

reduced by half before passing through each Spa-CTB, while
the channel number is doubled. This process can be formulated
as follows:

F i
M =

{
f i
a

(
8
(
Cat
(
XU, Y

)))
, i = 1

f i
a

(
F i−1

M ↓
)
, i = 2, 3

(1)

where f i
a is the i th Spa-CTB. F i−1

M and F i
M denote the input

and output features of f i
a . ↓ denotes downsampling operation

with patch merging [33]. 8 is the convolutional layer with
a kernel size of 3 × 3. Cat denotes concatenation operation.
In a similar operation, for the HSI feature stream, the LR-HSI
is first processed by a convolutional layer with a kernel size
of 3 × 3 and then undergoes the Spe-CTB to obtain spectral
deep features FH at different scales. On the contrary, the FH
at different scales is obtained by upsampling before passing
through each Spe-CTB (except the first one), where pixel
shuffle [56] is used to realize the upsampling. The process
can be represented as

F i
H =

{
f i
e (8(X)), i = 1

f i
e

(
F i−1

H ↑
)
, i = 2, 3

(2)

where f i
e is the i th Spe-CTB. F i−1

H and F i
H denote the input

and output features of f i
e . ↑ denotes upsampling operation

with pixel shuffle.
2) Multiscale Feature Symmetrical Fusion: Subsequently,

a hierarchical symmetrical structure is used to fuse the
different scale deep features of the HSI and MSI stream.
Compared with the fixed scale and non-hierarchical structure,
this hierarchical symmetrical network can effectively improve
computational efficiency. Specifically, the encoding–decoding
structure with a three-scale is used to fuse the multiscale
deep features from the bimodal images of stage one. In the
encoding stage, we concatenate the same scale features from
the HSI feature stream and the MSI feature stream, followed
by using a convolutional block (CB) to fuse the combined deep
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features. Each CB consists of two convolutional layers with
a kernel size of 3 × 3 and two LeakyReLU layers. Starting
from the highest resolution input, the encoder hierarchically
reduces the spatial resolution size by half and the channel is
doubled to fuse the combined HSI–MSI features at different
scales. Formally, the fusion process in the encoding part can
be defined as

F i
E =


Ci
(
Cat
(

F i
M , F4−i

H

))
, i = 1

Ci
(
Cat
(

F i−1
E ↓, F i

M , F4−i
H

))
, i = 2, 3

Ci
(

F i−1
E ↓

)
, i = 4

(3)

where Ci denotes the i th CB block layer in the encoding stage,
and F i

E is the fusion result of CB output at i th layer of encod-
ing stage. Note that F i

M (i = 1, 2, 3) corresponds to the F×4
M ∈

RH×W×B̃, F×2
M ∈ R(H/2)×(W/2)×2B̃, F×1

M ∈ R(H/4)×(W/4)×4B̃ ,
respectively. In contrast, F i

H (i = 1, 2, 3) corresponds to
the F×1

H ∈ R(H/4)×(W/4)×4B̃, F×2
H ∈ R(H/2)×(W/2)×2B̃, and

F×4
H ∈ RH×W×B̃ , respectively. They denote the different spatial

scales of FM and FH (see Fig. 2). In the decoding stage,
the last layer of low-resolution F4

E in the encoding stage is
used as input to recover the high-resolution representations
gradually. For better recovery, combined HSI–MSI multiscale
features are again involved in the decoding process to help
recover fine textures and prevent spectral distortion. The
decoder uses hierarchical upsampling to fuse these features
progressively. Concurrently, skip connections from encoding
stages at different scales are established to fuse multiscale
features hierarchically. Likewise, CBs are used to perform the
fusion process. The process can be formulated as follows:

F i
D =

{
C ′

i

(
Cat
(

F4
E ↑, F4−i

E , F4−i
M , F i

H

))
, i = 1

C ′

i

(
Cat
(

F i−1
D ↑, F4−i

E , F4−i
M , F i

H

))
, i = 2, 3

(4)

where C ′
i denotes the i th layer CB block in the decoding

stage, and F i
D is the fusion result of CB output at i th layer of

decoding stage.
3) Reconstruction: Finally, we take the upsampled LR-HSI

XU as the residual image and additively fuse it with the last
layer of feature representation F3

D to obtain the reconstructed
HSI X̃ ∈ RH×W×B .

B. Spa-CTB
Restricting self-attention within the local window can effec-

tively overcome high computational costs caused by global
Transformer; however, it also limits the ability of the model
to perceive global information, which is not conducive to
processing HSI in remote sensing scenes. For this reason, the
Spa-CTB is proposed to improve the ability of the model to
perceive the spatial global while inheriting the advantages of
the window-wise methods in terms of local sensitivity and low
computational cost. As shown in Fig. 3, the Spa-CTB consists
of a spatial regrouping self-attention (Spa-RSA), a feed-
forward network (FFN), and two LayerNorm (LN) operators.
Given the input tensor of Spa-CTB as TM ∈ RH×W×B̃ , the
formula can be expressed as follows:

TM = Spa-RSA(LN(TM)) + TM (5)
FM = FFN(LN(TM)) + TM . (6)

Algorithm 1 Framework of the Proposed LGCT
Input: 1) LR-HSI X ∈ Rh×w×B , 2) HR-MSI Y ∈ RH×W×b

Output: Reconstructed HSI X̃ ∈ RH×W×B

1: Step 1: Multiscale Feature Extraction ▷ III-A-(1)
2: Upsample LR-HSI using bicubic interpolation to obtain

XU
∈ RH×W×B .

3: Concatenate XU and Y along the channel dimension as
input to the MSI stream.

4: Extract deep features F i
M and F i

H at different scales from
the MSI and HSI feature streams (via Eq. (1) and (2)).

5: Step 2: Multiscale Symmetric Fusion ▷ III-A-(2)
6: Pair deep features F i

M and F i
H at different scales during

the encoding stage (via Eq. (3)), with the fusion process
proceeding from high to low resolution.

7: Recover high-resolution representations F i
D by hierarchi-

cal upsampling to symmetrically fuse multiscale HSI-MSI
features F i

M and F i
H (via Eq. (4)).

8: Step 3: Reconstruction ▷ III-A-(3)
9: Reconstruct the final HR-HSI as X̃ = XU + F3

D .

Fig. 3. Detailed structure of the proposed Spa-CTB. It consists of two
LN operators, a Spa-RSA, and an FFN. The Spa-RSA includes two parallel
branches, which are used to focus on the global and local information of the
MSI feature stream, respectively.

Next, we specifically introduce the Spa-RSA, which con-
tains two parallel branches focusing on the global and local
features, respectively. Such an integration strategy allows the
model to efficiently integrate both spatial macro-context and
micro-detail simultaneously. Specifically, for the input tensor
TM after LN, we generate the query, key, value matrix (i.e.,
QM , KM , VM ∈ RH×W×B̃) via linear projection. The process
can be expressed as follows:

QM = W T
QTM , KM = W T

K TM , VM = W T
V TM (7)

where WQ, WK , WV denote the learnable weight matrices
corresponding to QM , KM , VM respectively. To construct two
parallel branches, QM , KM , VM are divided equally along the
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spectral channel to obtain [QMl , KMl , VMl], [QMg, KMg,

VMg] ∈ RH×W×(B̃/2). For the local-aware part, we follow the
idea of window attention [33] and divide [QMl , KMl , VMl] into
non-overlapping windows, each of which contains (M × M)
pixels, so that the whole feature map is divided into (H W/M2)

windows. Spatial window MSA (SW-MSA) is used to capture
the dependencies between features within each window. For
each head i (i = 1, . . . , h), the output Y i

Ml obtained from the
computation of self-attention can be formulated as

Y i
Ml = Softmax

(
Q i

Ml

(
K i

Ml

)T

√
dM

+ RM

)
V i

Ml (8)

where RM ∈ RM2
×M2

is the relative position code. Then the
outputs of all the heads are concatenated along the channel
dimension to get the local aware output tensor YMl

YMl = Cat
(
Y 1

Ml , . . . , Y h
Ml

)
(9)

where h denotes the number of heads.
For the global-aware part, inspired by the shuffle idea [56],

[57], [58], we perform shuffle operations on tokens within
each window of the feature map. This method redistributes
the tokens within each window, enabling information initially
confined to self-attention computation within local windows
to interact across the entire feature map. In detail, we divide
[QMg, KMg, VMg] into non-overlapping windows, and like
the local part, each window contains (M × M) pixels.
Subsequently, to achieve the shuffling of tokens within the
windows and enhance the interaction of global information,
we shuffle the spatial dimensions [h, w] of the feature map by
exchanging their order. Specifically, for [QMg, KMg, VMg] ∈

R(H W/M2)×M2
×(B̃/2) after partitioning the windows, we trans-

pose it to [Q′
Mg, K′

Mg, V′
Mg] ∈ RM2

×(H W/M2)×(B̃/2), thereby
changing the relative position of tokens within the feature map.
Afterward, the attention map Y i ′

Mg of the i th head is computed
using (8), and the outputs of all heads are concatenated to
obtain Y′

Mg . For subsequent fusion, we perform an inverse
transpose operation to recover Y′

Mg ∈ RM2
×(H W/M2)×(B̃/2) into

YMg ∈ R(H W/M2)×M2
×(B̃/2). To fully exploit the outputs of

the local-aware and global-aware parts, we reshape the global
and local output and then use linear projection to fuse the
concatenated tensors to obtain the output T′

M ∈ Rh×w×B̃ of
Spa-RSA, which can be expressed as follows:

Spa-RSA(TM) = WM
(
Cat
(
YMl , YMg

))T (10)

where WM ∈ RB̃×B̃ refers to the linear projection used for
feature fusion. In this study, the M , related to windows size,
is set to 8. With this feature fusion strategy, the model can
capture spatial local details while implicitly modeling the
entire image globally through regrouping. This results in the
Spa-RSA improves the model performance while avoiding
explicitly increasing the computational load.

C. Spe-CTB

Unlike the window self-attention mechanism, which mainly
focuses on the interaction between spatial positions, the core
of the channel-wise self-attention mechanism lies in capturing
the deep spectral feature by analyzing the correlation between

Fig. 4. Detailed structure of the proposed Spe-CTB. Similar to the spatial
part, it consists of two LN operators, a Spe-RSA, and an FFN. The Spe-RSA
includes two parallel branches, which are used to focus on the global and
local information of the HSI feature stream, respectively.

bands [59]. This processing emphasizes feature statistics over
the entire spatial range, i.e., the entire space of the spectral
dimension as tokens, which may result in neglecting features
that are not significant on a global scale but are very important
on a local scale. In this case, the model may not capture the
details of the local features adequately. The limitation could
be amplified in HSI with a higher number of channels under
the remote sensing scene, thereby affecting the assignment
of channel weights, as well as the final fusion performance.
To this end, a Spe-CTB is designed to ensure that important
features at the local scale are adequately considered.

The proposed Spe-CTB, based on the channel-wise self-
attention mechanism, additionally introduces a part for local
awareness. This local aware part can focus on capturing the
details of local features. The outputs of the local-aware part
and channel-wise self-attention are then fused. In this way,
the model captures both global information between bands
and focuses on essential features between bands on a local
spatial scale. As shown in Fig. 4, the proposed Spe-CTB
and Spa-CTB structures are similar, consisting of a spectral
regrouping self-attention (Spe-RSA), an FFN, and two LN
layers. Formulaically, Spe-CTB captures spectral deep features
FH can be referred to (5) and (6).

In addition, the proposed Spe-RSA adopts a similar strategy
as the Spa-RSA, i.e., focusing on the spectral global context
and local details through two parallel branches, respectively,
and fusing the outputs of the two branches. For details, given
the input tensor TH ∈ Rh×w×B̃ , we first apply LN and then
transform the feature map to generate QH , KH , VH ∈ Rh×w×B̃ ,
which represent query, key, and value matrices respectively.
Referring to [59], this process is achieved by 1 × 1 pixel-wise
convolution followed by 3 × 3 depth-wise convolution. Then
reshape QH , KH , VH ∈ Rh×w×B̃ to Q′

H , K′
H , V′

H ∈ Rhw×B̃ .
For the global-aware part, channel-wise MSA (CW-MSA) is
used to obtain long-distance relationships across the band.
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We compute the similarity between QH and KH to get the self-
attention matrix. Furthermore, we use self-attention matrix to
weigh and sum the VH to get the output feature maps YHg

YHg = Softmax

((
Q i

H

)T K i
H

√
α

)
V i

H (11)

where α is the learnable scaling parameter. Finally, YHg ∈

Rhw×B̃ is reshaped to Rh×w×B̃ to obtain the output of the
global aware part.

For the local-aware part, we divide the feature space
into several groups and perform operations within each
group to enhance the mining of local details in the spectral
dimension. More specifically, we first divide the input fea-
ture map Q′

H , K′
H , V′

H ∈ Rhw×B̃ into N 2 groups to obtain
Q′

Hl , K′
Hl , V′

Hl ∈ RN 2
×(hw/N 2)×B̃ . Subsequently, we use CW-

MSA to compute the attention weights within i th group to
obtain the updated output Y i

Hl (i = 1, 2, . . . , N 2), and the
formula for this part can be referred to (11). The updated
features Y i

Hl within each group are reshaped according to
their spatial location in the original feature map to form the
complete output feature map YHl ∈ Rh×w×B̃ . In this way,
the weights within each group are dynamically formed based
on the input features, which allows the model to perceive
and respond to local features in more detail. Similar to the
Spa-RSA, we use a projection function to aggregate the
global–local fusion features to obtain the output T′

H ∈ Rh×w×B̃

of the Spe-RSA, and the process can be expressed as follows:

Spe-RSA(TH ) = WH
(
Add

(
YHl , YHg

))T (12)

where WH denotes the 1 × 1 convolutions used for feature
fusion. In this study, N , which relates to the number of
groups, is set to 8. In fact, the global-aware part is the case
where N is 1. Similar to the Spa-RSA, we use a multihead
mechanism to process the attention map, which means the
channels are divided into multiple heads, allowing them to
learn their attention maps simultaneously.

With this integration strategy, the model can capture
cross-band correlations using global spatial-scale features.
Additionally, it can generate specific response patterns for
each local region through regrouping, which improves the
adaptability to variations in input HSIs across different scenes,
resulting in higher-quality fusion outcomes.

D. Loss Function

To achieve network parameter updates, it is necessary to
minimize the loss between the reconstructed HSI X̃ and
the reference image Z. We adopt the L1 loss function to
optimize the model. Compared to the L2 loss function, the
L1 loss function effectively alleviates the smoothing issue in
the fused result and also provides better model convergence.
The mathematical expression for the L1 loss function is as
follows:

LL1 =
1
n

n∑
i=1

∣∣Z i − X̃ i
∣∣ (13)

where n denotes the number of training samples.

IV. EXPERIMENTAL RESULTS

The content of this section is used to present the experi-
mental results. The datasets used in the experiments and the
implementation details are first described. Then the experi-
mental results are shown, including comparison results with
the SOTA methods, real data fusion performance, ablation
analysis, and model complexity analysis.

A. Datasets

Three simulated datasets and one real remote sensing dataset
were used to validate the effectiveness of the proposed LGCT.
These datasets are known as the Pavia University,1 Houston,2

Chikusei,3 and Yellow River Estuary (YRE) [60] datasets.
Here are the details.

1) Pavia University: The HSI image was captured by
the Reflective Optics System Imaging Spectrometer
(ROSIS) over the Pavia University in Italy. The image
contains 610 × 340 pixels with a spatial resolu-
tion of 1.3 m. The Pavia University dataset includes
103 spectral bands available for analysis and mainly
involves the distribution of urban ground objects.

2) Houston: The HSI image was captured by the ITRES
CASI-1500 sensor over the University of Houston in
the USA. The data has a spatial size of 349×1905 with
a spatial resolution of 2.5 m. It has 144 spectral bands
that cover the range from 380 to 1050 nm. The scene
also mainly involves the distribution of urban ground
objects.

3) Chikusei: The HSI image was captured by Headwall
Hyperspec-VNIR-C sensor over Chikusei, Japan. The
data contains 2517 × 2335 pixels with a spatial resolu-
tion of 2.5 m and integrates 128 spectral bands covering
the range from 343 to 1018 nm. The scene covers both
urban and rural distribution.

4) YRE: The full-resolution dataset consists of one HSI and
one MSI, where the HSI is captured by the advanced
HSI on the Gaofen-5 satellite and the MSI is captured
by the MSI on the Sentinel-2A satellite. The data were
imaged over the eastern part of the Yellow River Delta
area in China. The HSI has a spatial size of 1400 ×

1400 and contains 280 spectral bands with wavelength
ranges from 400 to 2500 nm. The MSI has a spatial
size of 4200 × 4200 with four spectral bands covering
the range from 430 to 680 nm. The spatial resolutions
of HSI and MSI are 30 and 10 m, respectively.

B. Experimental Settings

1) Data Simulation: For the simulated dataset, the original
HSI is used as the reference image. A Gaussian filter with
a kernel size of 7 × 7 and a standard deviation of 2 is
applied to the reference image, followed by downsampling
by a factor of 4 to obtain the LR-HSI. The HR-MSI is
generated by selecting five bands from the reference image

1https://ehu.eus/ccwintco/index.php? title=Hyperspectral_Remote_Sensing_
Scenes

2https://hyperspectral.ee.uh.edu/?page_id=459
3https://naotoyokoya.com/Download.html
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at equal interval. Test samples are obtained by cropping a
128 × 128 sub-region from the center of the reference image.
After cropping the region in the reference image, it is zero-
filled to create the training set, ensuring no overlap between
the training and test samples. In each training, a randomly
selected subset of size 128 × 128 is used for training. In the
case of the Chikusei dataset, a sub-image of size 800 × 800 is
selected as the reference image. When working with the real
dataset, we follow previous studies [16] to generate training
samples. The same settings as the simulated dataset are used
to downsample the original HSI and MSI by a factor of 3 to
obtain the training samples. The original HSI is used as
ground truth to supervise the network. A sub-region of HSI
(size 96 × 96) and MSI (size 288 × 288) in the same scene is
selected as the real image to be fused, and the other regions
are the training regions, which do not overlap.

2) Implementation Details: All experiments are imple-
mented using the PyTorch framework on Python 3.8 and
MATLAB R2017b. The training process is optimized using
Adam optimizer with the learning rate set to 1e−4, and the
number of training iterations is set to 10 000. All experi-
ments are performed on a computer with an Intel4 Xeon4

Silver 4314 CPU 2.40 GHz and an Nvidia A40 GPU,
48 GB RAM.

3) Evaluation Metrics: The experiment employs six com-
mon metrics to evaluate the quality of the fused HSI obtained
by different methods, which include root-mean-square error
(RMSE), peak signal-to-noise ratio (PSNR), relative dimen-
sion less global error in synthesis (ERGAS), correlation
coefficient (CC), spectral angle mapper (SAM), and structural
similarity index (SSIM) [5]. Higher PSNR values, CC, and
SSIM closer to 1 indicate better image quality, while lower
RMSE, ERGAS, and SAM indicate better image quality. These
metrics provide a comprehensive assessment of the fused HSI
in terms of spectral fidelity and spatial visual effects.

For real HSI datasets, where reference images are not
available, we utilize quality with no reference (QNR) [61], Dλ,
and Ds for objectively evaluating image fusion results. The
QNR score is determined by two components, i.e., Dλ and Ds ,
with values closer to 1 indicating higher quality of the fused
images. Dλ measures the distortion of the fused image relative
to the original HSI in terms of spectral properties, and Ds
measures the changes in spatial resolution of the fused image
relative to the original MSI. Consequently, smaller values for
Dλ and Ds reflect better image fusion quality.

C. Comparison Experiments on Simulated Data
In this section, we focus on qualitative and quantitative

comparisons of the proposed method with several SOTA
models to illustrate the potential and uniqueness of our method
in terms of HSI and MSI fusion. Specifically, we choose
three types of mainstream methods for comparison: prior-
based traditional methods, CNN-based methods, and the latest
Transformer-based methods. Among the traditional methods
include the tensor decomposition-based method, i.e., the cou-
pled sparse tensor factorization (CSTF) [62] and the low
tensor multirank regularization (LTMR) [48], in addition

4Registered Trademark.

TABLE I
QUANTITATIVE INDEXES OF THE DIFFERENT METHODS ON THE PAVIA
UNIVERSITY DATASET. THE OPTIMAL VALUES ARE SHOWN IN BOLD

to subspace representation-based method (Hysure) [63]. For
CNN-based methods, we select various advanced models such
as ResTFNet [64], SSRNet [28], MSDCNN [22], and SCPNet
[65] to evaluate the effectiveness of the proposed methods.
Transformer-based methods include MCT [40], PSRT [43],
and DCT [44]. For these representative methods, the detailed
network structures can be found in the corresponding refer-
ences. We refer to the parameter settings in the corresponding
references to retrain these models for a fair comparison.

1) Results of Pavia University: We followed the experimen-
tal setup described in Section IV-B and performed quantitative
and qualitative analyses on the Pavia University dataset.
Table I reports the results of the different methods for the
six metrics in this scene, and it is clear that the deep
learning-based methods outperform the prior-based methods,
which reflects the powerful capability of deep learning for
feature representation. From the quantitative results, the pro-
posed LGCT has obvious advantages in terms of spectral
fidelity and detail recovery. In addition, the PSNR and SAM
values of the different methods in each band are shown in
Fig. 5(a). Band-wise analysis can provide detailed insights into
the performance of each method along the spectral dimension.
The data in the figure indicates that the proposed LGCT con-
sistently outperform others in most bands. Further evaluation
of the fusion results confirms this, and Fig. 6 provides the
fusion maps obtained by these methods and the corresponding
residual maps. The residual maps provide a finer view of the
difference with the reference image. The visual comparison in
Fig. 6 shows that the proposed method can generate results
that most closely match the reference image. This indicates
that the proposed method shows significant effectiveness in
maintaining spectral fidelity and recovering image details by
combining global contextual understanding with detail-level
local visual features.

2) Results of Houston: Table II reports the quantitative
results in the Houston dataset. The results show a similar
trend to the Pavia University dataset. Deep learning-based
methods achieve better reconstruction performance due to their
powerful fitting capabilities. Attention turns to the proposed
LGCT, which achieves an improvement of 5.97% and 3.79%
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Fig. 5. PSNR values and SAM values for different bands of the reconstructed HSIs in (a) Pavia University, (b) Houston, and (c) Chikusei. Lower values of
SAM indicate higher accuracy in spectral fidelity, while higher values of PSNR reflect better retention of spatial detail.

Fig. 6. Visual comparison of the different methods on the Pavia University
dataset. The first and third rows show the fusion maps obtained by the
different methods (R:67, G:29, B:1), and the second and fourth rows show
the average residual along the spectral dimension between the results obtained
by different methods and the reference image. Regions with lower residual
values (i.e., close to the reference image) are darker, while regions with higher
residual values are brighter. (a) Hysure. (b) CSTF. (c) LTMR. (d) ResTFNet.
(e) SSRNet. (f) MSDCNN. (g) SCPNet. (h) MCTNet. (i) PSRT. (j) DCT.
(k) LGCT. (l) Reference.

in PSNR compared to the best CNN and Transformer methods,
i.e., SCPNet and DCT, respectively, highlighting its significant
improvement in HSI restoration quality. Moreover, the pro-
posed LGCT has also shown significant advantages in other
metrics, indicating its excellent performance in enhancing
the spectral fidelity and spatial resolution of HSIs. Fig. 5(b)
illustrates the PSNR and SAM values of the different methods
on each band, and the orange line represented by the proposed
method performs the best in most bands. In addition, Fig. 7
shows a visual comparison of the fusion results. The deeper

TABLE II
QUANTITATIVE INDEXES OF THE DIFFERENT METHODS ON THE HOUSTON

DATASET. THE OPTIMAL VALUES ARE SHOWN IN BOLD

residual map reflects that the errors between the reconstruction
result obtained by the proposed method and the reference
image are negligible, which indicates that the fused images
obtained by the proposed method achieve an image quality
closer to the real scene.

3) Results of Chikusei: The quantitative results in Chikusei
are reported in Table III. Traditional methods are limited by
fixed model assumptions and fall behind other deep learn-
ing methods in different metrics. Transformer-based methods
exhibit superior results compared to CNN-based reconstruction
methods, indicating that breaking through the receptive field
limitations is beneficial for a more comprehensive understand-
ing of the image content, particularly for HSIs, which possess
extensive spectral–spatial contextual information. Among all
methods, LGCT achieves optimal performance in six different
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Fig. 7. Visual comparison of the different methods on the Houston dataset.
The first and third rows show the fusion maps obtained by the different
methods (R:61, G:30, B:8), and the second and fourth rows show the
average residual along the spectral dimension between the results obtained
by different methods and the reference image. Regions with lower residual
values (i.e., close to the reference image) are darker, while regions with higher
residual values are brighter. (a) Hysure. (b) CSTF. (c) LTMR. (d) ResTFNet.
(e) SSRNet. (f) MSDCNN. (g) SCPNet. (h) MCTNet. (i) PSRT. (j) DCT.
(k) LGCT. (l) Reference.

TABLE III
QUANTITATIVE INDEXES OF THE DIFFERENT METHODS ON THE CHIKUSEI

DATASET. THE OPTIMAL VALUES ARE SHOWN IN BOLD

metrics. The PSNR and SAM curves for each band presented
in Fig. 5(c) intuitively demonstrate the significant enhance-
ment in spectral fidelity and spatial resolution achieved by the
LGCT method relative to other methods. This highlights the
efficacy of the LGCT in improving image quality, particularly
in the reconstruction of spectral dimension details. For a better
visual comparison, Fig. 8 reveals the reconstruction maps and
residual maps obtained by all the methods. The figures show
that the results corresponding to LGCT are the closest to the
reference images, which are not only reflected in the high
visual similarity but also verified in the residual maps with
fewer artifacts.

D. Comparison Experiments on Real Data
To further validate the fusion effect of the proposed LGCT,

the validation experiments are conducted here on real HSI
and MSI data. A comparison of the quantitative results of
the different methods is reported in Table IV. It is quite

Fig. 8. Visual comparison of the different methods on the Chikusei dataset.
The first and third rows show the fusion maps obtained by the different
methods (R:80, G:76, B:2), and the second and fourth rows show the
average residual along the spectral dimension between the results obtained
by different methods and the reference image. Regions with lower residual
values (i.e., close to the reference image) are darker, while regions with higher
residual values are brighter. (a) Hysure. (b) CSTF. (c) LTMR. (d) ResTFNet.
(e) SSRNet. (f) MSDCNN. (g) SCPNet. (h) MCTNet. (i) PSRT. (j) DCT.
(k) LGCT. (l) Reference.

evident that the proposed method achieved the best scores
under all three metrics, which indicates that the fusion results
obtained by the proposed method have obvious advantages
in simultaneously retaining the original spectral information
and maintaining high spatial details. This is conducive to
the fused image to achieve higher application value. Fig. 9
shows the pseudo-color images synthesized in the 60th, 29th,
and 7th bands from the fused results obtained by different
methods. From the figure, it is known that the overall tex-
ture clarity of the fused images is significantly improved,
and the edges of the ground objects are sharper. Compared
with deep learning-based methods, traditional methods have
obvious artifacts. Among similar methods, the fused images
obtained by the proposed method have enhanced overall
contrast and better visualization performance, which reflects
that the proposed method can effectively improve the fusion
performance by enhancing the potential information neglected
in the spatial–spectral domain and symmetric fusion.

E. Ablation Analysis

In this section, we perform ablation experiments on the
CTBs in the spatial and spectral components of the proposed
LGCT to assess their specific contribution. In addition, we ana-
lyze the effectiveness of symmetric fusion.

1) Spa-CTB and Spe-CTB: In detail, we perform three
ablation experiments in the simulated dataset Houston and the
real dataset YRE. The first row in Table V presents the quanti-
tative results obtained from feature extraction between spatial
and spectral domains using spatial window self-attention and
channel-wise self-attention, respectively; this method is called
SW-CW. The second and third rows indicate the quantita-
tive results obtained by replacing the spatial window and
channel-wise attention in the MSI and HSI feature streams.
As shown in Table V, compared to SW-CW, focusing on both
local details and global context can significantly enhance the
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TABLE IV
QUANTITATIVE INDEXES OF THE DIFFERENT METHODS ON THE YRE DATASET. THE OPTIMAL VALUES ARE SHOWN IN BOLD

Fig. 9. Visual comparison of the different methods on the YRE real dataset. The presented fusion images are created by combining the 60th, 29th, and 7th
channels.

TABLE V
PERFORMANCE CONTRIBUTION OF THE PROPOSED SPA-CTB AND SPE-CTB ON THE SIMULATED DATASET AND THE REAL DATASET.

VALUES IN BRACKETS INDICATE THE DIFFERENCE FROM THE FIRST ROW. THE OPTIMAL VALUES ARE SHOWN IN BOLD

fusion performance, which is demonstrated in both simulated
and real datasets. This indicates the importance of global
and local processing mechanisms. Notably, applying SpeCTB
results in a greater improvement in SAM and Dλ compared
to applying SpaCTB. These two metrics are used to assess the
spectral fidelity. Conversely, applying SpaCTB has a greater
advantage over SpeCTB in terms of PSNR and Ds , which
are metrics used to measure the spatial reconstruction quality.
These results indicate the effectiveness of CTBs specifically
designed for spatial and spectral domains in emphasizing
spatial long-range dependencies and spectral local details.
Applying CTBs to both spatial and spectral components can
achieve optimal performance. This demonstrates the effective-
ness of the proposed CTBs in complementing and enhancing
overlooked potential spectral-spatial features, thereby con-
tributing to achieving higher-quality fusion results.

2) Symmetric Fusion Strategy: To verify the effectiveness
of the bimodal multiscale feature symmetric strategy, we con-
ducted experiments without considering symmetric fusion and
presented the experimental results in Table VI, where the

TABLE VI
PERFORMANCE OF THE SYMMETRIC FUSION STRATEGY ON THE HOUSTON

DATASET. “W/O SYM” INDICATES THAT SYMMETRIC FUSION
IS NOT USED. OPTIMAL VALUES ARE SHOWN IN BOLD

first row indicates the results without symmetric fusion. The
results show that while symmetric fusion leads to a limited
increase in computational and parameter load, it significantly
boosts the fusion performance of the model. This reflects the
effectiveness of the symmetric fusion strategy, which achieves
detail enhancement and spectral fidelity in the multiscale
feature hierarchical fusion process of encoding and decoding
stages by improving fusion feature reuse.

3) Spectral Multiscale Inputs: To evaluate the contribution
of spectral information to HSI reconstruction, we performed an
ablation study during the multiscale feature symmetric fusion

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 25,2024 at 08:41:01 UTC from IEEE Xplore.  Restrictions apply. 



5537114 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

TABLE VII
CONTRIBUTION OF SPECTRAL MULTISCALE FEATURES TO IMAGE

RECONSTRUCTION ON THE HOUSTON DATASET. “W/O SPE” INDICATES
THE USE OF SPATIAL INFORMATION ONLY. “G” STANDS FOR

GIGA. THE OPTIMAL VALUES ARE SHOWN IN BOLD

stage, specifically analyzing the impact of spectral multiscale
features. The detailed results are presented in Table VII, where
the first column represents the case where only spatial multi-
scale features are considered, serving as the control group. The
quantitative results indicate that spectral information positively
contributes to image reconstruction. The fusion of multiscale
spectral features further enhances the quality of the recon-
structed images, which clearly demonstrating the significant
role of spectral information in image fusion.

4) Window Size and Number of Groups: To analyze the
impact of window size M and the number of groups N on
image reconstruction, we conducted ablation experiments on
the Houston dataset. For the hyperparameter window size M in
Spa-CTB, we trained models by setting M to 4, 8, 16, and 32.
As shown in Table VIII, the results indicate that reconstruction
performance initially increases with M , peaking at M = 8,
before declining as M increases further. This confirms that a
larger receptive field can enhance performance, but excessively
large window may result in the loss of local details and
introduce unnecessary complexity. The proposed Spa-CTB can
implicitly improve the receptive field of the network when it
has smaller windows, thereby complementing and enhancing
global modeling capabilities. Consequently, we set the window
size M to 8 in this study.

For the hyperparameter group number N in Spe-CTB,
we keep the same settings as M to train the model. The
results are shown in Table VIII, where the performance shows
a similar trend to M as N increases. This indicates that
fewer groups (which implies a larger window size for each
group) generally result in better reconstruction performance.
However, when the group number is too small, the lack
of sufficient local details within each group may limit the
performance gain. The optimal reconstruction performance is
achieved at N = 8, so we set the number of groups N to 8 in
this study.

F. Analysis of Model Complexity

In this section, model complexity is analyzed, and Fig. 1
compares the computational efficiency and fusion perfor-
mance of the deep learning-based methods on the Houston

TABLE VIII
ANALYZE THE IMPACT OF WINDOW SIZE AND NUMBER OF GROUPS

TO IMAGE RECONSTRUCTION ON THE HOUSTON DATASET.
THE OPTIMAL VALUES ARE SHOWN IN BOLD

dataset. Generally, Transformer-based methods exhibit lower
efficiency compared to CNN-based methods, but they deliver
superior fusion performance. While Transformer models are
superior in capturing global contextual information, their
fully connected attentional mechanisms typically involve more
significant computational effort. Although dividing the Trans-
former into different windows can reduce model complexity,
the global perceptual capability is limited, resulting in a
performance bottleneck. As shown in Fig. 1, compared to
other Transformer-based methods such as MCT and DCT, the
proposed LGCT shows higher PSNR with significantly fewer
parameters and Flops. Despite the lower computational cost
of PSRT compared to the proposed LGCT, its fusion perfor-
mance lags behind. These results demonstrate that our model
effectively enhances global dependency capability through the
proposed Spa-CTB and Spe-CTB without incurring additional
computational costs. At the same time, it maintains attention
to local semantic details, thus achieving a good balance
between fusion performance and computational efficiency,
making real-time applications feasible.

V. CONCLUSION

In this article, we proposed a Transformer-based model
for HSI and MSI fusion called LGCT. The proposed LGCT
consists of two separate feature extractors for spatial and
spectral domains and a multiscale feature symmetric fusion
network for fusing spectral–spatial deep features. With the
carefully designed collaborative Transformer blocks (CTBs)
for both spatial and spectral, two parallel feature extractors
can effectively focus on and enhance overlooked potential
crucial features in spatial and spectral domains, thus achieving
efficient modeling of LR-HSI and HR-MSI from local details
to global contexts at different scales. In addition, the proposed
method progressively fuses multiscale enhanced features in a
hierarchical and symmetrical manner to improve the quality of
HSI reconstruction. Experimental results on simulated and real
datasets show that LGCT has significant advantages in spatial
and spectral metrics over existing fusion SOTA methods while
maintaining high computational efficiency.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 25,2024 at 08:41:01 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: LOCAL–GLOBAL COLLABORATIVE TRANSFORMER FOR FUSION OF HSI AND MSIs 5537114

The purpose of fusing multimodal images to enhance image
quality is to improve the performance of downstream tasks.
Current approaches typically separate image enhancement
and downstream tasks into two independent stages, which
may limit the performance and efficiency of system. Moving
forward, we plan to employ a multitask learning framework
to integrate image fusion and downstream tasks in an end-to-
end manner. This approach aims to enhance the generalization
ability of model and expand its applicability.
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