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Abstract— The joint classification of hyperspectral image (HSI)
and light detection and ranging (LiDAR) data is gaining attention
for its improved classification accuracy. However, effectively
integrating the rich spectral information of HSI and the elevation
features of LiDAR has remained a challenge in multimodal
fusion. This article proposes a novel approach called progressive
semantic enhancement network (PSENet) for hyperspectral and
LiDAR classification based on a progressive joint spatial–spectral
attention mechanism. PSENet mainly comprises two modules:
the spatial grouping constraint (SAGC) module and the spec-
tral weighting constraint (SEWC) module. The SAGC module
extracts multiscale features in the spatial domain, while the
SEWC module focuses on enhancing semantic features in spectral
dimension. By gradually utilizing spatial and spectral constraint
modules to progressively enhance feature extraction, PSENet
integrates affluent information for a more refined classification
of ground objects. Based on experimental results, it has been
demonstrated that PSENet outperforms several most advanced
methods on three datasets. The SAGC and SEWC modules
proposed in PSENet enable the effective integration of the
spatial, spectral, and elevation information from HSI and LiDAR,
providing a promising way to perform classification more accu-
rately. The source codes of this work will be publicly available
at http://szu-hsilab.com/.

Index Terms— Attention mechanism, fusion classification,
hyperspectral image (HSI), light detection and ranging (LiDAR).

I. INTRODUCTION

IN RECENT years, the classification of ground objects has
become increasingly important in remote sensing (RS).

Among various RS data, hyperspectral image (HSI) stands out
due to its rich spectral information, which can significantly
aid in object classification [1], [2]. Hyperspectral imaging
is a primary technique in Earth observation and has found
extensive application across various fields, such as urban
planning [3], [4], environmental monitoring [5], [6], precision
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agriculture [7], [8], change detection [9], [10], and anomaly
detection [11], [12]. However, despite the rapid development
of the classification techniques for HSI, we still cannot achieve
the desired classification accuracy in some applications, due
to the susceptibility of HSI to atmospheric changes [13], and
the phenomenon that the same object has different spectra and
different objects have identical spectra [14].

Light detection and ranging (LiDAR) technology differs
from hyperspectral imaging in that it uses laser light for active
ranging. This technique is less affected by weather conditions
and can provide accurate elevation information, enabling com-
prehensive acquisition of the spatial characteristics of ground
objects [15]. However, LiDAR technology primarily relies
on single-wavelength laser detection and cannot capture the
spectral information of objects. This limitation results in a
limited ability to classify ground objects in complex scenes
using LiDAR data alone [16]. Therefore, data from a single
sensor typically have limitations in certain applications [17].
Currently, a lot of research focuses on the fine recognition
of ground objects through the fusion of complementary infor-
mation from multiple RS data sources. Due to the different
working principles of Earth observation sensors, data obtained
by various equipment can reflect different characteristic details
of the ground objects. For example, by fusing hyperspectral
and LiDAR data, it is possible to leverage the complementary
advantages of spatial, spectral, and elevation information, thus
enhancing the precision of identifying objects [18].

The traditional classification approaches of multimodal
RS data involve extracting morphological features followed
by selected classifiers such as support vector machine
(SVM) [19] and random forest (RF) [20] for fusion.
Khodadadzadeh et al. [21] proposed a multifeature learning
strategy for fusing and classifying hyperspectral imagery and
LiDAR data, extracting attribute profiles from both sources.
The advantage of not requiring any regularization parameters
makes it an effective way to utilize and integrate different types
of features. Ghamisi et al. [22] proposed the extinction profile
(EP) method to extract spatial features of HSI more efficiently,
resulting in higher classification accuracy than AP based on the
extinction filter. Rasti et al. [23] proposed an orthogonal total
variational analysis method to fuse the features of HSI and
LiDAR followed by the classification based on the EP method
for feature extraction. However, traditional approaches have
some shortcomings when dealing with HSI and LiDAR data.
First, these methods require extensive expertise for manual
feature design in the RS domain. Since HSI and LiDAR
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data have different feature expressions, feature extraction is
more challenging. Second, these methods usually use simple
feature fusion methods such as splicing and summation, which
cannot fully utilize the information advantages of HSI and
LiDAR data for better fusion. Third, most of these methods
use shallow models such as linear classifiers or decision trees,
making it difficult to improve classification accuracy.

With the emergence of deep learning (DL), particularly the
rapid advancements in convolutional neural networks (CNNs),
more performance-efficient DL methods have emerged for the
joint classification using HSI and LiDAR data [24], [25].
DL methods can automatically learn features, extract rich
feature information from multimodal RS data, and are suitable
for dealing with complex nonlinear relationships that may
exist in RS data. Therefore, DL methods have become one
of the mainstream methods for joint classification using HSI
and LiDAR data. Chen et al. [26] designed two separate
CNNs to extract the respective features of HSI and LiDAR
data and then used a fully connected (FC) neural network to
fuse the features obtained by the two CNNs for classification.
Inspired by the end-to-end idea, Chen et al. [27] directly fused
HSI and LiDAR data at the pixel level of the original data
at first. Then, they used two CNNs to extract spectral and
spatial features that were finally superimposed and classified.
However, this approach may result in insufficient information
mining of LiDAR data. Zhang et al. [28] proposed a patch-to-
patch CNN to combine multiscale features between different
modalities for collaborative classification of the two-modal
data. Roy et al. [29] extended the traditional self-attention
mechanism by introducing cross-modal self-attention modules
to classify hyperspectral and LiDAR data. To address the issue
of pixelwise features that are ineffective with current cascade
or weighted fusion approaches, Lu et al. [30] first trained a
coupled adversarial feature learning network to learn higher
order semantic features in an unsupervised manner and then
performed classification through a supervised multilevel fea-
ture fusion. Sun et al. [31] designed an end-to-end lightweight
network based on CNN and Transformer for hyperspectral and
LiDAR data classification. However, these DL-based methods
may not be able to capture the change of logical representation
relations hidden in the semantic information of two modalities
from shallow to deep during the fusion process. They often
ignore the weight constraints of different semantic information
at different depths of the network, leading to the loss of rele-
vant spectral information from HSI and elevation information
from LiDAR during the fusion process.

The use of attention mechanisms has become increasingly
crucial in image classification [32]. Essentially, attention
mechanisms allow DL models to better focus on essential
features or areas, reducing the interference of irrelevant infor-
mation [33]. However, most works only focus on processing
single-modal data in multiscale or multimodal data in single-
scale, without taking into consideration that multimodal data
may bear different contributions at various scales. Based on
this, we propose a progressive semantic enhancement network
(PSENet) with the objective of gradually enhancing the seman-
tic information from shallow features to deep features during
the feature fusion process. The aim is to accurately analyze the

spatial distribution and trends of the Earth’s surface, thereby
uncovering the intrinsic information and characteristics of RS
data and reducing classification errors.

To summarize, the main contributions of PSENet are given
as follows.

1) In the PSENet, we propose a spatial grouping con-
straint (SAGC) module that incorporates a multiscale
cross-modal spatial attention mechanism to enhance
the spatial properties of land objects. This mechanism
strengthens the multiscale spatial information by incor-
porating elevation from LiDAR data at different group
levels, thus improving the distinguishability of land
objects that exhibit high similarity at a single scale.

2) We propose a spectral weighting constraint (SEWC)
module to capture the intrinsic properties of land
objects. It adaptively enhances spectral weights based
on interdependence among channels in multiscale spatial
features. Group convolutions emphasize spectral interac-
tion within the same scale, followed by feature fusion
across scales, allowing for better integration of spatial,
spectral, and elevation information.

3) Unlike other parallel joint spatial–spectral attention
mechanisms commonly used in the classification, the
two modules proposed in PSENet progressively con-
strain and enhance the semantic information as the
network deepens. By utilizing spatial and spectral
constraint modules to progressively enhance features,
PSENet integrates affluent information for a more
refined classification of ground objects.

We organize this article as follows. Section II provides a
brief overview of multimodal RS data fusion and attention
mechanisms in DL. Section III presents the proposed model
and algorithm in detail. Section IV describes the experimental
setup and analysis of the results. Finally, Section V presents
the conclusion of this article.

II. RELATED WORKS

A. Fusion of HSI and LiDAR Data

The purpose of fusing HSI and LiDAR data is to extract
the most useful feature information from complementary
and redundant data sources to form a more comprehensive
description of the scene. This fusion enables more accurate
classification because of the comprehensive description of
the scene. From a methodological perspective, the fusion of
HSI and LiDAR data can be broadly categorized into pixel-,
feature-, and decision-level fusions [34].

Generally, pixel-level fusion refers to directly averaging HSI
and LiDAR data at the pixel level [35]. While pixel-level
fusion preserves more information, it results in a high compu-
tational burden. Feature-level fusion maximizes the extraction
of meaningful features from HSI and LiDAR data, offering
higher computational efficiency and compressing feature infor-
mation with minimal loss. Compared to pixel-level fusion,
feature-level fusion involves fewer parameters, resulting in
improved processing efficiency. Decision-level fusion involves
analyzing the overall results using logical operations and
decision rules. However, it requires more data preprocess-
ing and feature extraction techniques and heavily relies on
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classification outcomes [36]. It is worth noting that due to
significant differences in imaging modalities between HSI and
LiDAR data, fusion at the feature level is the most widely used
method [37].

The morphological feature concatenation fusion methods
have been widely used in the early classification of HSI
and LiDAR data. However, this approach often leads to
high-dimensional features, significantly increasing the com-
putational complexity of subsequent classification steps [38].
To address the issue of redundant information in morpholog-
ical features, fusion methods based on low-rank models have
emerged [23]. These methods aim to transform features from
a high-dimensional space to a low-dimensional space. Another
fusion method is based on composite kernels, which utilizes
kernel space mapping for feature dimensionality reduction and
fusion [39]. To leverage global similarity measures among
samples, graph-based fusion methods utilize graph space for
feature representation. Among these approaches, the work
described in [40] is a typical example, which establishes cor-
responding topological graphs for different features to achieve
graph space mapping. However, a drawback of such methods
is that computing the similarity between samples becomes
time-consuming when dealing with large-scale images. With
the impressive capabilities demonstrated by DL, methods
based on DL have also gained significant attention in HSI
and LiDAR data fusion. Representative models in this context
include single-level feature fusion structures and multilevel
feature fusion structures based on CNNs [41].

B. Attention Mechanism

In DL, the attention mechanism is an important technique
that enables the neural network to focus more on specific input
data [42]. Typically, neural networks consider all information
equally when processing input data, but, in some cases,
certain parts of the information may be more important to
the successful completion of the task at hand. The attention
mechanism calculates the importance weight of each input
data and then applies these weights to the calculation process
of the neural network, allowing the network to focus more
on important elements in the input sequence. Researchers
have developed many plug-and-play modules based on the
attention mechanism, which have improved the performance
of related tasks in the natural image field. For instance,
Hu et al. [43] proposed the squeeze-and-excitation attention
mechanism to selectively modulate the scale of channels
for capturing channel correlations. However, the proposed
attention mechanism does not consider attention in the spatial
dimension. To address this shortcoming, Woo et al. [44] com-
bined convolution and attention mechanisms to pay attention to
images from both spatial and channel aspects. Subsequently,
Wang et al. [45] proposed an efficient mechanism based on
channel attention, in which a local cross-channel interaction
strategy and a method to adaptively determine the coverage of
local cross-channel interaction are introduced. Recently, due
to its ability to effectively integrate and associate information
from different modalities, enhancing overall understanding and
performance, cross-modal attention has been proposed and

applied in many fields, such as image segmentation [46], data
fusion [47], and object detection [48].

The advantages of the attention mechanism for image pro-
cessing have been verified in the field of natural images [49],
[50]. Inspired by this, researchers have introduced it into the
field of RS, hoping to enhance the model’s ability to process
spatial, spectral, and elevation information from HSI and
LiDAR data [51], [52]. Mohla et al. [53] proposed a feature
extraction and fusion framework for land cover classification
from HSI and LiDAR data. The proposed framework uses the
self-attention mechanism to highlight the spectral features of
HSI and emphasizes the spatial features of HSI using the
cross-attention mechanism by employing the attention map
of LiDAR data. Fang et al. [54] used the cross-attention
mechanism instead of the self-attention mechanism for cross-
modal information interaction. Similarly, cross-modal attention
modules have also been proposed in [29] and [31] to classify
hyperspectral and LiDAR data. These works demonstrate the
importance and effectiveness of the attention mechanism in
HSI and LiDAR classification and provide useful inspiration
for research in related fields. However, existing cross-modal
attention mechanisms in hyperspectral and LiDAR classifica-
tion are typically single-scale, ignoring the spatial difference
of ground objects at various levels, which is precisely the
intrinsic characteristics of ground objects and is crucial for
classification.

III. METHODOLOGY

In order to fully utilize the complementary advantages of
HSI and LiDAR data, we intend to strengthen the distinguish-
ing ability of the classification model from the perspectives of
spatial and spectral domains. Therefore, the proposed model
presented in this section mainly consists of two components:
1) an SAGC module and 2) an SEWC module. In terms of
the spatial dimension, SAGC can comprehensively describe
the distribution characteristics of various ground objects under
different scale structures. Regarding the spectral dimension,
SEWC can capture and emphasize the category information of
ground features. In the following, we will illustrate the detailed
architecture of the proposed model.

A. Network Structure

Given the HSI Xh ∈ RM×N×Ch and LiDAR X l ∈ RM×N×Cl

obtained at the same area of the Earth, where M and N
represent the height and width of the two images, and Ch

and Cl denote the number of channels in the HSI and LiDAR,
respectively, consider each pixel Y = {yi

}
n
i=1 of the image as

the center, and select HSI and LiDAR patches X = {xi
h, xi

l }
n
i=1

into the proposed model. Here, xh ∈ RP×P×Ch and xl ∈

RP×P×Cl , where P and n represent the size of the neighbor-
hood and the number of pixel samples available in the image,
respectively. Labels yn

i ∈ {1, 2, . . . , K }, where K represents
the number of label categories. Next, these patches are fed into
the model for training. The architecture of PSENet is shown in
Fig. 1. Due to the mismatch in channel dimensions between the
original HSI and LiDAR data, we have devised two separate
feature extraction modules to extract convolutional features of
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Fig. 1. Illustration of the proposed PSENet framework. The network is mainly composed of two modules, SAGC and SEWC, which are proposed for
adaptive semantic information constraints in spatial and spectral dimensions, respectively.

the same dimensions for these two modalities. These feature
extraction modules are denoted as F Eh(·) and F E l(·), and
they yield the extracted features Fh and Fl , respectively. Then,
the feature extraction operation can be formulated as

Fh = F Eh(xh) (1)
Fl = F E l(xl). (2)

Let Conv(·), B N (·), and ReLU(·) denote convolutional layer,
batch normalization, and ReLU activation functions, respec-
tively. The two feature extraction modules share the same
structure and can also be more specifically expressed as

F Eh(·) = ReLU(B N (Conv(ReLU(B N (Conv(·)))))) (3)
F E l(·) = ReLU(B N (Conv(ReLU(B N (Conv(·)))))). (4)

After extracting certain abstract features, the SAGC module
and the SEWC module based on the joint attention strategy
are used to adaptively group multiscale spatial information and
enhance the spectral information. Let SAGF(·) and SEWF(·)

represent SAGC and SEWC, respectively. The formula is
expressed as

Fsa = SAGC(Fh, Fl) (5)
F f = SEWC(Fsa). (6)

Finally, the fused features are input into the classification
module for obtaining pixel-by-pixel classification results.

B. SAGC Module

Due to the limitation of single-scale features in effectively
expressing interclass differences and distinguishing object
boundaries in the classification, the SAGC module is proposed
to address this issue by grouping the spatial information of the
input intermediate feature maps using a multibranch structure.
This ensures that the fused features carry rich information from
various spatial scales. In addition, this cross-modal spatial
attention allows for exploring the effective complementary

elevation information provided by LiDAR to enhance the
spatial and spectral features of HSI at different scales, thereby
compensating for the limited information conveyed by HSI
data. Considering the need to learn features at different spatial
scales, we set the groups of branches T = 4 in the SAGC
module, each capturing features at a different scale. Then, the
multiscale spatial feature maps can be obtained by channel
concatenation, denoted as Cat(·). This operation combines
the feature maps from different branches along the channel
dimension, resulting in a comprehensive representation that
encompasses information from multiple scales, which can be
formulated as

Fsa = Cat([F1, F2, F3, F4]) (7)

where F1, F2, F3, and F4 represent the feature maps out-
putted by the four groups of branches, each capturing features
at a different scale. Fsa refers to the multiscale spatial feature
map generated by the SAGC module, which is obtained
by combining and integrating the feature maps from these
different branches.

The branch structure of SAGC is shown in Fig. 2. Specif-
ically, in the channel dimension, we generate four groups of
HSI and LiDAR features with different receptive fields using
convolutional filters of varying sizes, i.e., 3 × 3, 5 × 5,
7 × 7, and 9 × 9. Let us assume that the dimensions of
the intermediate feature maps for both HSI and LiDAR data
are C , and each feature map at a different scale has a common
channel dimension of C ′

= (C/T ). This ensures that each
scale captures distinct spatial information while maintaining
consistency in the channel dimension. The HSI and LiDAR
features at the i scales, i.e., Fhi and Fli , are expressed as

Fhi = ReLU(B N (Conv(Fh))), i = 1, 2, 3, 4 (8)
Fli = ReLU(B N (Conv(Fl))), i = 1, 2, 3, 4. (9)

At this time, each location of HSI and LiDAR features in space
contains information of the same range, and the proposed
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Fig. 2. Illustration of one branch of the SAGC module. SAGC is a module containing four branches, achieving spatial grouped attention across modalities
at different scales.

Fig. 3. Illustration of SEWC. SEWC fuses features through spectral attention, grouped convolution, and ordinary convolution.

model enhances the representation ability of different ground
objects. Then, LiDAR spatial attention maps of corresponding
scales are generated by different branches. Let AvgPool(·)
and MaxPool(·) mean the operation of average pooling and
maximum pooling, respectively, Sigmoid(·) represents the
sigmoid activation function, and the formula is expressed as

Fmi = Cat(AvgPool(Fli ), MaxPool(Fli )), i = 1, 2, 3, 4
(10)

F′

li = Sigmoid(Conv(Fmi )), i = 1, 2, 3, 4. (11)

Among them, Fmi is the corresponding feature map of each
branch after the average, maximum pooling, and concatenation
operation, and F′

li is the spatial attention map finally obtained
by different branches. The spatial attention map is created
by using average pooling and maximum pooling operations
across different scales of feature maps. This helps to aggre-
gate channel information and generate corresponding weight
coefficients. By multiplying the spatial attention maps with the
features of HSI at different scales, the constraints of height
information can be adaptively added to the features of HSI.
The formula is expressed as

Fi = F′

li ⊗ Fhi , i = 1, 2, 3, 4. (12)

Under the constraint of the SAGC, the proposed model
places greater emphasis on the pixel regions that shadow

significant impact on classification, effectively disregarding
less relevant areas. However, relying solely on the spatial
extent of land cover attributes is insufficient. As the model
learns deeper features, the model tends to extract more
high-level semantic information. Therefore, it is necessary to
highlight the essential attributes of land cover from the spectral
dimension, which are more relevant for classification tasks.

C. SEWC Module

The previous module focused only on the spatial multiscale
constraints between the two modalities. With the deepening of
the network, the semantic information between different chan-
nels of HSI becomes more distinct. At this point, the deeper
semantic information becomes more abstract and no longer
requires spatial information constraints. Therefore, SEWC
utilizes attention strategies to train genuine spectral weights
on multiscale features, enhancing the feature representation
ability of key feature channels. This enables PSENet to pro-
gressively and adaptively process deeper semantic information
and enhance the spectral representation of features, thereby
improving the ability to accurately distinguish ground objects.

The structure of SEWC is shown in Fig. 3. To eliminate
spatial disturbances, we first employ average pooling and max
pooling operations on the multiscale feature maps to obtain
channel-level global features. Performing these operations in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 24,2024 at 11:23:55 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

parallel ensures a more comprehensive information extraction.
Next, the resulting feature maps from both pooling operations
are individually fed into a multilayer perceptron (MLP), and
their outputs are passed through activation functions to obtain
weighted feature vectors. Finally, the weighted features from
both branches are elementwise summed to infer finer channel
attention. The formula is expressed as

MLP(·) = Conv(ReLu(Conv(·)))) (13)
Favg = Sigmoid(MLP(AvgPool(Fsa))) (14)
Fmax = Sigmoid(MLP(MaxPool(Fsa))) (15)

Fse = Favg + Fmax (16)

where Favg and Fmax represent the weighted feature vectors
obtained by average pooling and max pooling operations,
respectively. Fse denotes the final feature vector obtained by
summing these two vectors, which represents the recalibrated
channel weights in the spectral attention map. MLP(·) refers
to the MLP layer. Note that in order to reduce model com-
plexity and improve generalization, the MLP layers for Favg
and Fmax can be considered the same, composed of two
shared-parameter convolutional layers. This design allows for
shared learning across the two branches.

Third, the recalibrated HSI channel weights are elementwise
multiplied with the multiscale feature map, yielding a refined
multiscale feature map with enriched spectral information. The
formula is expressed as

Fsae = Fsa ⊗ Fse (17)

where Fsae represents the output multiscale refined feature
map. At this stage, the proposed model exhibits enhanced
discriminative power across different channels, achieving the
objective of focusing on specific feature map channels that are
crucial for classification.

Finally, under spectral constraints, we perform deeper fusion
using convolution, which can be divided into grouped con-
volution and regular convolution. The purpose of grouped
convolution is to reduce the volume of the parameter while
isolating the information exchange between different groups
in the refined feature maps. In other words, the recalibrated
feature maps initially emphasize the intrinsic information of
different-scale feature maps. Then, through regular convolu-
tion, the spectral and spatial information exchange between
different groups is achieved, resulting in the final deep fusion.
The formula is expressed as

DF(·) = ReLU(B N (Conv(ReLU(B N (GConv(·)))))) (18)
F f = DF(Fsae) (19)

where F f represents the final feature output by the SEWC
module. DF(·) represents the deep fusion operation, and
GCONV(·) represents the grouped convolution. After the
cross-channel information interaction, the feature F f is fed
into an FC layer for classification, resulting in the final
classification prediction map. The FC layer utilizes the learned
features to make predictions and assign class labels to the input
data based on the extracted information.

TABLE I
NUMBER OF TRAINING AND TESTING SAMPLES FOR EACH

LAND COVER CLASS ON THE SZUTREE DATASET

TABLE II
NUMBER OF TRAINING AND TESTING SAMPLES FOR EACH

LAND COVER CLASS ON THE HOUSTON2013 DATASET

IV. EXPERIMENTS

A. Dataset Description

To validate the effectiveness of the proposed method,
we conducted comparative and ablation experiments on three
HSI-LiDAR paired datasets: SZUTree, Houston2013, and
MUUFL Gulfport. The SZUTree dataset, containing six tree
species, was constructed to evaluate the accuracy of tree
species classification.

1) SZUTree Dataset: The dataset was captured at the Cang-
hai Campus of Shenzhen University, Shenzhen, China, by an
unmanned aerial vehicle (UAV). The HSI data consist of
112 bands with wavelengths ranging from 400 to 1000 µm.
The HSI and LiDAR data have a spatial resolution of 10 cm,
with a size of 1005 × 900. The ground-truth samples are
distributed into six distinct classes. Table I shows the number
of training and testing samples for each land cover class.

2) Houston2013 Dataset: This dataset was acquired in and
around the University of Houston campus and was featured
in the 2013 GRSS Data Fusion Competition [40]. The HSI
data consist of 144 bands ranging from 0.38 to 1.05 µm in
the wavelength. Both the HSI and LiDAR data have a spatial
resolution of 2.5 m and dimensions of 349 × 1905. The
ground-truth samples are classified into 15 distinct categories.
Table II shows the number of training and testing samples for
each land cover class.

3) MUUFL Gulfport Dataset: The dataset was captured
in November 2010 [55], which initially contained 72 bands;
64 bands were used after excluding the first and last four due
to noise. The LiDAR data consist of two elevation gratings.
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TABLE III
NUMBER OF TRAINING AND TESTING SAMPLES FOR EACH LAND

COVER CLASS ON THE MUUFL GULFPORT DATASET

All bands and rasters were registered to obtain a total size of
325 × 220. There are a total of 53 687 ground-truth pixels,
including 11 categories. Table III shows the number of training
and testing samples for each land cover class.

B. Compared Methods

Nine methods were used as comparison methods in
this study, including CNN-HSI [56], CoupledCNNs [57],
S2ENet [54], FusAtNet [53], Early-Fusion [41], Middle-
Fusion [41], LateFusion [41], Cross-HL [29], and CALC [30].
CNN-HSI is a representative CNN-based single-source clas-
sification method. CoupledCNNs is a classic framework for
fusing HSI and LiDAR data by using two coupled CNNs.
The fusion methods of Early-Fusion, Middle-Fusion, and
Late-Fusion models involve simple feature concatenation at
the shallow, middle, and deep layers of the CNN, respectively.
S2ENet, FusAtNet, Cross-HL, and CALC are state-of-the-art
models that use attention mechanisms for HSI and LiDAR
classification. We found that most of the models were trained
using different platforms. To ensure the comparability of
experimental results, we implemented all the experiments
in a rigorous and consistent experimental environment. All
methods were trained and tested on the PyTorch platform.

C. Experimental Settings and Evaluation Metrics

All the experiments mentioned in this article were carried
out using an Intel Xeon Silver 4314 CPU and NVIDIA
GA102GL [A40] graphics card using the PyTorch framework.
To overcome the challenge of acquiring large labeled train-
ing data in reality, only ten labeled samples were randomly
selected for each class in the three datasets presented in this
article for model training. During the training process, the
proposed model was optimized using the Adam algorithm,
with the cross-entropy function serving as the loss function.
We assessed classification performance using three metrics:
overall accuracy (OA), average accuracy (AA), and kappa
coefficient. To avoid the influence of random factors and
better demonstrate the model’s stability, we averaged the
experimental results. Specifically, all experiments, including
the comparative experiments and ablation experiments, were
conducted using the same training and test samples based
on the random division of the dataset, with the final perfor-
mance obtained by the average of the results in ten repeating
experiments.

D. Experimental Results and Analysis
1) SZUTree Dataset: Table IV presents the experimental

results of different methods on the SZUTree dataset, with the
best results highlighted in bold for clarity. The single-source
classification model CNN-HSI has a notably lower classi-
fication accuracy on the tree species dataset, with an OA
26.63% lower than that of the proposed model. All competing
classification models based on the fusion of two RS data,
i.e., HSI and LiDAR, have achieved good fusion performance
on the SZUTree dataset. Among them, CoupleCNNs, Cross-
HL, and CALC obtain comparable classification performance.
S2ENet achieves the best classification performance except
for the proposed method. Among the three different fusion
stages, Middle-Fusion achieved good fusion performance, with
a 2.90% higher OA than Early-Fusion and a 1.70% higher
OA than Late-Fusion. It can be inferred that among the three
simple fusion methods, the SZUTree dataset is not suitable for
the early fusion stage and the late fusion stage. Early-Fusion,
being an early fusion method, may result in a mismatch of
features between HSI and LiDAR data, potentially forcing
the network to fuse certain information. On the other hand,
Late-Fusion, as a late fusion method, may lead to excessive
abstraction of information and the potential loss of a significant
amount of detailed information.

Fig. 4 displays the classification maps of the competi-
tors, the ablation experiments, and the proposed method
for the SZUTree dataset. In the classification result map of
CNN-HSI, there are many misclassified areas for the ficus
(class 1) and the acacia auriculaeformis (class 5), while the
results of other multisource classification models that have
included LiDAR data appear closer to the ground truth. It is
evident that compared with other methods, the tree species
categories predicted by the proposed method are in better
agreement with the ground truth. This is because the proposed
method can effectively integrate all cross-modal information.
In other words, subtle texture distinctions of different tree
species at various scales, as well as the elevation changes, can
be effectively captured by multiscale spatial attention maps
obtained from LiDAR data.

2) Houston2013 Dataset: Table V compares the classifica-
tion accuracies of the proposed method and competitors for the
Houston2013 dataset. Surprisingly, the OA of the FusAtNet
model is only 76.93%, which is 4.30% lower than the OA of
the single-source classification model CNN-HSI. The OA of
the Cross-HL model is only 81.08%. We infer that one of the
factors affecting the classification accuracy of the FusAtNet
and Cross-HL model on the Houston2013 dataset is the limited
training samples. Since the Houston dataset contains more
categories and each category occupies fewer pixels, FusAtNet,
which directly employs cross-attention, cannot able to learn
richer intraclass and interclass relationships when there are
fewer labeled samples. Although S2ENet and the proposed
method are also based on the attention mechanism, they
both introduce a feature extraction module to enhance the
information representation of HSI and LiDAR before using
the attention mechanism for feature fusion. CALC achieved
the second-best classification result with an OA of 89.31%,
which is a bit lower than 90.09% of the proposed method.
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Fig. 4. Classification maps and ground-truth map for the SZUTtee dataset. (a) CNN-his (70.28%). (b) CoupledCNNs (90.98%). (c) S2ENet (93.20%).
(d) FusAtNet (84.07%). (e) Early-fusion (84.08%). (f) Middle-fusion (86.98%). (g) Late-fusion (85.28%). (h) Cross-HL (89.94%). (i) CALC (90.44%). (j) w/o
SEWC (93.16%). (k) w/o SAGC (93.57%). (l) SAGC_1G (92.97%). (m) SAGC_2G (93.50%). (n) PSENet (96.91%). (o) Ground-truth map.

TABLE IV
CLASSIFICATION ACCURACY FOR THE SZUTREE DATASET

Fig. 5 displays the classification maps of the competitors,
the ablation experiments, and the proposed method for the
Houston2013 dataset. It is evident that the CNN-HSI model
misclassifies the highway (class 10) as other classes. Similar
to the situation in the SZUTree dataset, this may also be due to
the fact that it is a single-source classification model without

the assistance of elevation information, making it prone to
producing abnormal classification results.

3) MUUFL Gulfport Dataset: Table VI presents the classi-
fication accuracies of the proposed method and competitors for
the MUUFL Gulfport dataset. S2ENet is also one of the models
that achieves the best classification performance, except for
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Fig. 5. Classification maps and ground-truth map for the Houston2013 dataset. (a) CNN-his (81.23%). (b) CoupledCNNs (88.35%). (c) S2ENet (86.30%).
(d) FusAtNet (76.93%). (e) Early-fusion (85.42%). (f) Middle-fusion (85.76%). (g) Late-fusion (84.57%). (h) Cross-HL (81.08%). (i) CALC (89.31%).
(j) w/o SEWC (89.22%). (k) w/o SAGC (88.65%). (l) SAGC_1G (88.72%). (m) SAGC_2G (89.45%). (n) PSENet (90.09%). (o) Ground-truth map.

TABLE V
CLASSIFICATION ACCURACY FOR THE HOUSTON2013 DATASET

the proposed method, with an OA of 79.00%. However, this
model only relies on labeled static receptive fields and a
unified information scale within an attention layer, making it
unable to simultaneously capture features of different scales.
By proposing an SAGC module to address this deficiency,
the proposed model produces an OA equal to 81.47%, which
is 2.32% higher than S2ENet. Moreover, it can be noticed
that the accuracy is significantly improved in the classification
of trees (class 1). This is because the proposed model can
more sensitively capture the variation of tree species with
respect to their elevation profile, and the combination of HSI

and LiDAR can achieve complementary advantages, making
it more suitable for tree species identification.

Fig. 6 displays the classification maps of the competitors,
the ablation experiments, and the proposed method for the
MUUFL Gulfport dataset. Due to irrelevant factors such as
noise, many models, such as FusAtNet and Late-Fusion,
do not accurately distinguish the boundaries between objects
and eventually predict results that do not match the ground
truth. The proposed model learns the features from shallow
to deep with more adaptable learned features, allowing for a
more robust expression of the differences between different
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Fig. 6. Classification maps and ground-truth map for the MUUFL Gulfport dataset. (a) CNN-his (73.84%). (b) CoupledCNNs (77.43%). (c) S2ENet (79.05%).
(d) FusAtNet (70.76%). (e) Early-fusion (77.77%). (f) Middle-fusion (78.06%). (g) Late-fusion (76.65%). (h) Cross-HL (73.69%). (i) CALC (77.80%). (j) w/o
SEWC (81.01%). (k) w/o SAGC (80.59%). (l) SAGC_1G (80.80%). (m) SAGC_2G (81.11%). (n) PSENet (81.47%). (o) Ground-truth map.

categories and smoother visual effects in predicted category
maps.

Based on the above analysis, it is evident that the proposed
network has the highest OA on the three evaluation metrics in
the joint classification of HSI and LiDAR, outperforming the
other state-of-the-art competitors. The running times of the
proposed method and the competitors for the three datasets
are presented in Tables IV–VI, respectively. Generally, the
FusAtNet took the longest time in the classification, and
CoupleCNNs needed the shortest time. The proposed method

obtained the best classification accuracy with an acceptable
running time.

E. Classification Results of Ablation Experiments

To verify the significance of the contributions entangled
in the proposed network, we present the results of ablation
experiments in this section. Table VII shows the numerical
values for the four different configurations corresponding to
the SAGC and SEWC modules, which are believed to be
the main contribution of the proposed method. These four
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TABLE VI
CLASSIFICATION ACCURACY FOR THE MUUFL GULFPORT DATASET

TABLE VII
ABLATION STUDIES ON THREE DATASETS

configurations are a network without the SEWC module,
a network without the SAGC module, and networks with both
SEWC and SAGC but only divided into one group or only two
groups when the SAGC module is used. We use “w/o SEWC,”
“w/o SAGC,” SAGC_1G, and SAGC_2G to represent these four
configurations, respectively.

For the network without SAGC, the feature directly enters
the SEWC module after feature extraction. At this stage, the
number of layers in the network is shallow, the spectral details
may not be fully captured, and the spatial distribution of
the ground object coverage category may not be effectively
represented. The network without SEWC is also unable to
emphasize feature categories well. As to our PSENet, the
elevation information and spectral information are constrained
and fused progressively from shallow to deep, allowing the
network to extract more relevant semantic information that can
be used for object classification. In addition, as the grouping of
SAGC increases, the features extracted and integrated by the
network contain more distribution characteristics of the ground
objects at different scales, achieving better classification per-
formance. Particularly on the SZUTree dataset, the OA of the
proposed method is 3.41% higher than that of the network
with only two groups.

We present the visualization results of ablation experiments
on three datasets in the subimages (j)–(m) of Figs. 4–6.
It can be seen that the proposed method obtains classification
result maps with more accurate textures and classification

Fig. 7. Feature visualization for different network configurations on three
datasets. On the SZUTree dataset: (a) network w/o SEWC, (b) network w/o
SAGC, and (c) PSENet. On the Houston2013 dataset: (d) network w/o SEWC,
(e) network w/o SAGC, and (f) PSENet. On the MUUFL Gulfport dataset:
(g) network w/o SEWC, (h) network w/o SAGC, and (i) PSENet.

effects closer to the ground truth. Using SZUTree as an
example, when performing classification using the network
with the SAGC of only one group, ficus microcarpa (class 2)
is easily misclassified as litchi (class 3). This is likely because
ficus microcarpa and litchi both belong to dicotyledonous
plants, and it can be challenging to distinguish them from
the very similar textures of the leaf. Therefore, when the
spatial information or spectral details are not rich enough,
it could be difficult for the network to learn discriminative
semantic features. To further demonstrate the effectiveness of
SAGC and SEWC, we use t-distributed Stochastic Neighbor
Embedding (t-SNE) to visualize the distribution of features
extracted by the network w/o SEWC, w/o SAGC, and the
proposed PSENet. Fig. 7 presents the feature distribution in
the 2-D space for the three datasets. It can be seen that the
feature distribution in Fig. 7 (a), (b), (d), (e), (g), and (h) is
more dispersed and disorderly. However, the features learned
by the PSENet in Fig. 7 (c), (f), and (i) can improve the
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similarity of samples within a class and increase the difference
of samples between classes. The results illustrate that the
integration of SEWC and SAGC modules in the proposed
PSENet is effective in feature extraction for HSI images, which
is more beneficial to downstream classification tasks.

V. CONCLUSION

In this article, we propose an effective network, i.e.,
PSENet, for the fusion classification of HSI and LiDAR. The
network mainly includes two semantic information learning
modules to extract semantic information from shallow to deep
progressively. SAGC captures the multiscale spatial informa-
tion of features to fully reflect the texture of ground objects,
while SEWC captures the spectral information of features to
emphasize the basic properties of ground objects for final
classification.

Extensive comparative experiments were performed using
three datasets, demonstrating that PSENet can produce excel-
lent overall classification results, outperforming all other
state-of-the-art competitors. Ablation experiments were also
conducted to verify the contributions of the proposed modules.
In summary, the proposed PSENet is a practical deep-learning
model for the joint classification of HSI and LiDAR data
based on a joint attention mechanism. However, although the
proposed PSENet can achieve better classification performance
compared with some state-of-the-art methods at small training
samples, the potential semantic information of unlabeled sam-
ples has not been excavated. It would be helpful to improve
the classification performance if the semantic information of
unlabeled samples could be considered, which will be on the
list of future work.
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