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Abstract— Hyperspectral anomaly detection (HAD) aims to
identify anomalous objects from hyperspectral images (HSIs)
whose spectral features significantly deviate from their surround-
ings. Existing HAD methods still reconstruct some anomalies
during the background reconstruction process, which can seri-
ously affect the detection accuracy. Consequently, inspired by
Mamba’s ability to effectively model long sequences, we propose
a multiscale Mamba reconstruction network for HAD (MMR-
HAD) by enhancing the representation of the background and
inhibit anomalies from being reconstructed. MMR-HAD first
removes most of the anomalous pixels in HSIs using the random
mask (RM) strategy, which reduces the interference of anomalous
pixels on the background reconstruction and makes the back-
ground features more prominent. To further filter out the small
amount of residual anomalous pixels, we propose the multiscale
dilated attention background enhancement (MDABE) mecha-
nism, which enhances the background representation. Finally,
we apply the multiscale dynamic feature fusion (MDFF) strategy
to reconstruct the background image, further extracting and
strengthening the background information, thus obtaining a pure
background image. MMR-HAD, which focuses on generating a
pure background, has been experimentally validated on seven
real hyperspectral datasets. The results demonstrate that it
excels in background enhancement and anomaly suppression,
significantly improving detection accuracy. Introducing Mamba
offers a promising solution for HAD, with substantial potential
for practical application.

Index Terms—Deep learning (DL), hyperspectral anomaly
detection (HAD), hyperspectral image (HSI), image reconstruc-
tion, Mamba, random mask (RM).
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I. INTRODUCTION

YPERSPECTRAL images (HSIs) are 3-D cubes com-

posed of hundreds of spectral images, where each pixel
contains rich spatial and spectral information [1], [2], [3],
which can be used to distinguish objects on the ground.
Therefore, HSIs have been shown to have unique advantages
in many applications, such as land-cover classification [4],
[5], [6], dynamic monitoring of the environment [7], [8], and
anomaly detection [9], [10].

Hyperspectral anomaly detection (HAD) is an unsuper-
vised binary classification problem for identifying anomalous
objects from HSIs whose spectral features significantly deviate
from their surroundings [9]. Anomalies are objects that occupy
a tiny region in the image and have spectral features that
are different from their surroundings, and these anomalies are
usually irregular and have a low probability of occurrence.
Up to now, reconstructing the background first and then sepa-
rating the anomalies is a common approach used to recognize
anomalies. Existing hyperspectral anomaly detectors can be
mainly categorized into three main groups: statistical-based
models, representation-based models, and DL-based models.

A. Statistical-Based Models

The Reed—Xiaoli (RX) [11] detector is the most classical
statistically based HAD method, which assumes that the back-
ground data conforms to a multivariate Gaussian distribution,
and detects anomalous targets by calculating the Mahalanobis
distance of each pixel from the background. Based on this,
a series of variants are derived, such as global RX (GRX) [12],
which uses the data of the whole image to model the back-
ground, thus obtaining the overall statistical information, and
is suitable for homogeneous scenes. Localized RX (LRX) [12]
models the background by using the data of the local region
around the test pixel only and can better handle complex and
nonuniform scenes and reduce the interference of anomalies
on the background estimation. However, these RX methods
have certain drawbacks: first, a single normal distribution
model cannot adequately describe the complex background in
real hyperspectral scenes. Second, the background statistics
are easily affected by noisy pixels and anomalous pixels,
affecting the detection results. Many improved methods have
been proposed to address the above shortcomings. The kernel
RX detector [13] effectively handles the problem of spec-
tral indivisibility in linear space by mapping the data to a
high-dimensional feature space and kernelizing the RX model.
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Weighted RX (W-RXD) [14] improves the estimation of
background information by employing a method that reduces
the weight of anomalous pixels and assigns a higher weight to
background pixels. Clustering-based RX detector (CBAD) [15]
identifies anomalies by clustering the distribution of pixel val-
ues in HSIs and recognizing anomalies in each cluster. In [16],
an algorithm called subspace RX (SSRX) was proposed to
reduce the interference of anomalous pixels in background
modeling by eliminating background dimensions with high
variance.

B. Representation-Based Models

Representation-based models usually achieve anomaly
detection by constructing an efficient representation of hyper-
spectral data. Chen et al. [17] detected anomalies by
representing pixels in HSIs as sparse linear combinations of
training samples. However, the limitations of this method are
the high computational complexity required to construct the
dictionary and the lack of robustness to noise, so robust prin-
cipal component analysis (RPCA) [18] was proposed, which is
a typical method based on low-rank sparse matrix decomposi-
tion, and enhances the robustness to noise by decomposing the
hyperspectral data into a low-rank matrix and a sparse matrix.
Similarly, Guo et al. [19] introduced background endmember
representation and proposed a novel HAD method termed
learnable background endmember with subspace representa-
tion (LEBSR). The collaborative representation-based detector
(CRD) proposed by Li and Du [20] uses the strategy of
representing background pixels as approximate representa-
tions of their spatial neighbors. In contrast, anomalies cannot
be represented by adjacent pixels. This method has a high
dependence on the distance-weighted regularization matrix
and parameter adjustment. In [21], the problem of abnormal
pixel contamination in hyperspectral data was solved by intro-
ducing spatial principal component analysis (PCA) to extract
main pixel information, combined with the CRD method.
Xu et al. [22] proposed a low-rank and sparse representation
(LRASR), which separates background and anomalies by rep-
resenting background pixels as low-rank matrices and adding
sparse regularization terms to the representation coefficients.
Guo et al. [23] proposed a method that utilizes structural
incoherence constraints, first-order statistics, and background
decentralization to enhance anomaly separation, while a mixed
noise model and hierarchical optimization improve robust-
ness and accuracy. Considering the special characteristics
of HSIs, which contain not only spectral information but
also rich spatial information, many methods based on tensor
decomposition have been designed. Li et al. [24] proposed
a tensor-based detector (PTA) by decomposing the HSI into
a low-rank background tensor and a sparse anomaly tensor.
Representation-based models often require parameter settings,
which hinders the performance and applications in practical
scenes.

C. DL-Based Models

In recent years, DL has shown great potential in the field of
computer vision and has been successfully applied to HAD.
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In the existing research on HAD, the commonly used algo-
rithms are convolutional neural network (CNN), autoencoder
(AE), generative adversarial network (GAN), and Transformer.

CNN-based anomaly detectors utilize multilayered convo-
lution to capture deep features in the HSI. Li et al. [25]
proposed a transfer-based deep CNN, where the multilayered
CNN is responsible for capturing the differences between the
center pixel and its surrounding pixels and classifying each
pixel based on a similarity measure, but the disadvantage is
that it requires a large number of data samples. Fu et al.
[9] proposed a CNN-based HAD method using the plug-and-
play technique. Zhang et al. [26] proposed a lightweight CNN
method based on residual learning and background estimation,
focusing on directly learning anomalous features to simplify
HAD. In [27] and [28], a novel strategy based on CNN is used
to realize the task of background reconstruction, and finally the
anomalies are separated to realize the detection of anomalous
targets, and its unique strategy provides a new research idea for
HAD.

AE-based networks tend to identify anomalies through the
large amount of residuals generated during the background
reconstruction process. Lei et al. [29] proposed a HAD
method (SLDR) based on spectral learning, which uses AE
to reconstruct the spectrum and detect anomalies through
spectral error map (SEM) and spectral angular distance (SAD).
They also apply some constraints on the encoder to pro-
duce more accurate background reconstructions. Chang et al.
[30] proposed a hypersection anomaly detection algorithm
based on sparse AE, which is trained by using pixels in the
entire window and the outer window, respectively, and uses
the difference in reconstruction errors to identify anomalies.
Fan et al. [31] proposed a robust anomaly detector (RGAE)
based on AE by introducing the graph regularization term
of ¢, -norm and superpixel segmentation to enhance the
robustness of AE in HSI anomaly detection. To effectively fuse
the spectral and spatial information, Lu et al. [32] employed
manifold learning to extract the local spatial structure, then
combined it with an AE model. However, when processing
complex scenes, AE will also reconstruct some anomalies,
resulting in higher reconstruction errors.

Considering the limited performance of AE in complex
scenes, GANs have subsequently emerged. GANs utilize
adversarial training of generators and discriminators to recon-
struct the background image of the original HSI [33] and
others generated images as close to the background as possible
by training the GAN and employing detectors to detect anoma-
lies. Unsupervised hyperspectral anomaly detectors have also
been proposed. Jiang et al. [34] proposed an unsupervised
discriminative reconstruction HAD method based on GAN
and AE. The background reconstruction is learned by the
AE network and the anomaly samples are highlighted using
the GAN. Li et al. [35] proposed weakly supervised detectors
by incorporating a regularization network in the GAN and
using the GAN to learn discriminative potential reconstruc-
tion, which improves the robustness to anomalies and noise.
Jiang et al. [36] proposed a weakly supervised discriminative
learning method for HAD using a spectrally constrained GAN,
which focuses mainly on learning a discriminative end-to-end
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reconstruction network. Luo et al. [37] introduced an adversar-
ial sample generation-based multiscale Siamese network that
generates high-quality training samples through adversarial
learning and utilizes background suppression loss functions
to enhance target-background discrimination.

Although GANs perform well in generating data, due
to the instability of training in GANSs, Transformer-based
methods appear and provide new research ideas in the field
of HAD. The unique self-attention mechanism in Transformer
can better capture long-distance dependencies in hyperspectral
data [38]. Li et al. [39] combined Swin Transformer with UNet
to reconstruct the background HSI for anomaly detection.
Lian et al. [40] proposed a new gating network based
on Transformer, which uses two specialized branches to
enhance background reconstruction and suppress abnormal
reconstruction, respectively. They also introduce an adaptive
gating unit to adjust the working status of the branches.
Xiao et al. [41] extracted features from global and local fea-
tures through a dual-window mask converter to fully utilize the
spatial-spectral characteristics of HSIs. An adaptive weighted
loss function is also proposed to accurately suppress the recon-
struction of abnormal targets. Wu and Wang [42] addressed
the problem of insufficient representation of pixel spatial
correlation in HSIs by introducing a spectral Transformer
network. He et al. [43] proposed a transformer network that
gradually captures spatial-spectral features by using global
and local transformer blocks layer by layer, while introducing
hidden diagonal masks to suppress the problem of excessive
abnormal reconstruction, further improving detection accuracy.
Wu and Wang [44] proposed a Transformer-based autoencoder
framework that successfully solves the problems of nonlinear
mixing and insufficient spatial information in HAD by com-
bining local and global spatial information. The successful
application of Transformer to HAD further motivates us to
explore more powerful modeling methods of long-distance
dependency for the background reconstruction in HAD task.

D. Motivation and Contribution

In summary, methods for HAD still suffer from problems
such as a limited number of samples and the possibility
of reconstructing some anomalies during the background
reconstruction process, which seriously affect the detection
accuracy. To address these problems, in this article, we propose
a self-supervised multiscale Mamba reconstruction network
for HAD (MMR-HAD) to enhance the representation of the
background and suppress the reconstruction of anomalies, thus
gaining good anomaly detection performance. Our method is
divided into three main steps: the first step removes most
of the anomalous pixels in the HSI by random mask (RM)
strategy. The second step further filters out a small portion of
the anomalies by the multiscale dilated attention background
enhancement (MDABE) mechanism, which in turn strength-
ens the background representation. Finally, we enhance the
background representation by the multiscale dynamic feature
fusion (MDFF) strategy to reconstruct the background image
and finally obtain the pure background. According to our
investigation, the proposed MMR-HAD is the first to introduce
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Mamba into the field of HAD. The main contributions of our
proposed MMR-HAD are summarized as follows.

1) We propose a random mask strategy that aims to
effectively exclude anomalous interference in HSIs by
replacing the pixels with the mean value of randomly
selected neighboring pixels. The strategy flexibly adapts
to anomalous targets with various morphology and dis-
tribution, avoiding the problem that a fixed mask cannot
cover all anomalous pixels. Reconstruction using these
random neighborhood pixels can minimize the influence
of anomalous pixels on the background reconstruction,
and ultimately obtain a purer background image.

2) A multiscale dilated attention background enhancement
module is designed to enhance the reconstruction of the
background of HSIs by synthesizing feature information
at different scales through the combination of mul-
tiscale dilated convolution and attention mechanisms.
MSABE employs convolutional branches with varying
dilation rates to capture fine features and global context.
It leverages a multihead attention mechanism to high-
light critical background regions, effectively mitigating
the influence of anomalous pixels.

3) We constructed a multiscale Mamba reconstruction net-
work, in which an MDFF strategy is proposed to fully
utilize the flexible and efficient feature expression capa-
bilities of the Mamba network. By dynamically selecting
and fusing features at different scales, MDFF organically
combines global and local information and enhances
the expression ability of background information, thus
generating a pure background image without the inter-
ference of anomalous targets.

The rest of this article is organized as follows. Section II
describes the details of the model of MMR-HAD. Section III
presents a large number of experimental results and analyses,
and Section IV concludes the full paper.

II. PROPOSED METHOD

The general flow of our proposed MMR-HAD is shown
in Fig. 1. First, the original HSI is subjected to pixel-shuffle
downsampling operation to reduce the spatial correlation of
neighboring pixels in the HSI [28], and then the RM strategy
is applied to the downsampling image. Next, the HSI after
RM is fed into MMR-HAD for the reconstruction task of
the background. Specifically, given X e R¥*WxC apn HSI
after performing RM, where H, W, and C denote the height,
width, and the number of spectral channels of the HSI,
respectively. X first undergoes shallow feature extraction by
the shallow feature extraction module, which is composed
of three 3 x 3 convolutions. Then, the presence of anoma-
lies is further weakened by the proposed MDABE module,
achieving the enhancement of the background. After that,
multiscale background information is extracted by Mamba-
in-Mamba (MiM) hierarchical encoder [45] and fused using
the proposed MDGG strategy. Finally, the background is
constructed by the image reconstruction module. After the
processing of the MMR-HAD, pixel-shuffle upsampling is
applied to the reconstructed background to obtain the HSI
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Fig. 1. Flowchart of the proposed MMR-HAD for HAD.
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Fig. 2. Diagram of RM. The left side represents a random pixel value of 4,
and the right side represents a random pixel value of 5.

with pure backgrounds. In the anomaly detection stage, the
reconstruction errors of the original HSI and the reconstructed
image with pure background are calculated to get the final
anomaly detection result.

A. Random Mask

In order to prevent the interference of anomalies during
the background reconstruction process, we propose an RM
strategy, as shown in Fig. 2. We aim to remove as many
anomalous pixels as possible from the HSI. The strategy
traverses each pixel in the HSI in turn (the black pixels in
Fig. 2) and generates a set of random neighboring pixels
(blue pixels) around each pixel point. The neighboring pixels
are randomly generated in four directions (top, right, bottom,
and left). Then, the pixels in the yellow rectangle enclosing
these neighboring pixels are considered to be anomalous pixels
or highly likely to be anomalous pixels, while the pixels
between the yellow rectangle and the red rectangle serve as
the neighboring background pixels. Finally, the value of the
black pixel is replaced by the average of the neighboring
background pixels. As a result, we reduce the influence of
anomalous pixels by removing the vast majority of anomalies
and reconstructing the values of the black pixels from the
surrounding background pixels. In addition, the RM are set
up to cope with the irregularities in the shape and size of the
anomalous targets in HSIs. If a fixed mask is used, the pixels

of anomalous targets may not be completely covered and the
anomalous interference cannot be effectively removed. The
advantage of the RM strategy is that it can flexibly cope with
a variety of complex anomalous target morphologies in HSIs,
and by randomly selecting neighboring pixels, it effectively
reduces the influence of the anomalous pixels on the back-
ground reconstruction, resulting in a purer background image
for the final reconstruction.

B. Multiscale Dilated Attention Background Enhancement

The HSI obtained after RM may still retain a small portion
of anomalies, we need to suppress the expression of anomalies
as much as possible to obtain a purer background. To achieve
this goal, we propose a multiscale dilated attention background
enhancement module, as shown in Fig. 3. Since HSIs are
different from ordinary RGB images in that each pixel contains
a large amount of spectral information and the background
region has complex and extensive contextual information,
how to effectively utilize the information contained in the
background is crucial for background reconstruction. To fully
utilize the background information in HSIs, in MSABE,
we use three dilation convolutions with different dilation rates
to increase the extent of the receptive field. Specifically, the
MSABE module consists of three parallel branches, each of
which possesses a 1 x 1 convolution with shared weights and
a 3 x 3 convolution with different dilation rates. The dilation
rates of the three branches are set to 1, 2, and 3, respectively.
The multiscale dilated attention will facilitate the acquisition
of subtle features and global information in the reconstructed
background. The dilated attention will also help filter out some
abnormal pixels in the features. Mathematically, assuming that
the input feature map is M, the output of each branch is
denoted as

M; = Convsys, 4= (Convix; (M),

ief{1,2,3) (1)
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where Conv;y; represents a 1 x 1 convolution layer and
Convsy3 4—; represents a 3 x 3 convolution layer with a
dilation rate of i.

The outputs of each of the three branches M; are residually
summed to fully preserve the shallow features, and the results
obtained are denoted as

Y, =M;eM, ie{l,23} 2)
where @ represents element-wise summation.

To further enhance the feature representation, we use feature
maps at different scales as inputs to the query (Q), key (K),
and value (V) in the attention mechanism, i.e., Y3 as Q, Y, as
K, and Y, as V. With this setup, the multihead attention mech-
anism can synthesize the feature information at different scales
to capture the multilevel contextual relationships contained in
the input feature maps, which are denoted, respectively, as

Q=Y3; K=Y, V=Y, 3)

Finally, the multihead attentional mechanism is introduced to
pay more attention to the expression of context and suppress
the expression of anomalies. The attention mechanism is
represented as

T

. QK
Attention(Q, K, V) = Softmax| —— |V 4
Q ) 7D 4

where Softmax(-) represents the Softmax function to normalize
the attention weights into a probability distribution and D is
the column dimension of Q and K.

Through the combination of multiscale dilation convolution
and multihead attention mechanism, MSABE can synthesize
feature information of different scales, improve the ability to
capture complex background features in HSIs, and enhance
the performance of background reconstruction. MSABE is not
only able to capture the features in a wider range and reduce
the influence of anomalies but also focus on the important
background features through the attention mechanism, which
can improve the accuracy of the background reconstruction
and the Robustness.

C. Multiscale Mamba Reconstruction

HSI contains both spatial information and numerous spectral
bands. However, this richness of information also brings higher
computational complexity and data redundancy, placing higher
demands for background generation models. Recently, Mamba
has demonstrated its strong potential for modeling complex
data, and it has achieved remarkable success in several areas
[45], [46], especially in handling long sequence data. There-
fore, we propose a multiscale Mamba reconstruction module,
which aims to utilize the advantages of Mamba to improve
the performance of HAD. Specifically, visual sentences and
visual words are first generated by the convolutional stem, i.e.,
the local patch of the HSI is considered as visual sentences
and they are further decomposed into subpatches as visual
words to further explore the locality. Then, the subpatches
are fed into the MiM hierarchical encoder module to extract
background features at different scales. In the decoder stage,
to fuse the features extracted by Mamba, we propose an MDFF
module as shown in Fig. 4. MDFF achieves the fusion by
dynamically selecting important features based on their global
information during fusion. The whole process is done in two
separate phases after the mixed convolutions are used to extract
multiscale features from the feature map. The first stage is
to dynamically adjust the features on the channel dimension
(indicated by blue arrows in Fig. 4). The second stage obtains
global spatial information by simple convolution (indicated by
orange arrows in Fig. 4). Finally, the features obtained in the
two stages are combined to obtain the final features.

First, three parallel branches with different sizes of convo-
Iution kernels are first used to extract the background feature
information under different receptive fields, the sizes of the
convolution kernels are set to 3 x 3, 5 x 5, and 7 x 7,
which are capable of capturing features at different scales.
Next, the outputs of the above different scale convolutions are
spliced in the channel dimension to preserve the multiscale
features. In this way, we can fuse the features at each scale
to obtain a rich feature map. A 1 x 1 convolutional layer
is then applied on the spliced feature map, which not only
preserves the important feature information but also reduces
the computational cost by linearly combining the information
from different channels. Specifically, the input feature maps
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are F; and F,, respectively. F; represents the multiscale
semantic features extracted from the MiM layered encoder,
which includes four feature maps of different resolutions and
can capture multiscale information from high resolution to low
resolution. F, is the high-resolution feature map obtained by
upsampling in the PatchExpand module. This module restores
the spatial size of low-resolution features layer by layer and
adjusts the number of channels to further enhance the spatial
details and contextual information of the feature map. The
generated F, gradually restores high-resolution spatial details
and performs MDFF with the corresponding scale F; feature
map through the MDFF module, thereby fully integrating
multiscale spatial and semantic information. Taking the F, as
an example, the process of F| can expressed as

F;«i = ReLUBN(Conv;;(F1))), i€{3,5 7} (5)
Fconcal = [F3><3, F5><5’ F7><7] (6)
Fl] = Conv 1 * Feoneat @)

where BN(-) represents batch normalization, ReLU(:) rep-
resents the rectified linear unit activation function, and
[] represents concatenating feature maps along the chan-
nel dimension. Similarly, F, is processed through the same
operations to obtain F,. Feature maps F, and F} are then
concatenated to obtain F’

F = [F,F]. ®)

In the first stage, to enable the subsequent modules to effec-
tively utilize the fused features, the number of channels of the
feature maps has to be reduced back to the original value by a
channel compression mechanism. The channel compression of
MDFF is not achieved by a simple 1 x 1 convolution but is
guided and optimized by the global channel information wgy,.
Specifically, the global average pool is carried out in the
spatial dimension to obtain the compressed feature map. The
compressed feature map is then passed sequentially through a
fully connected, ReLU activation function, a fully connected
layer, and a Sigmoid function to generate the channel weight.
Finally, wy, is multiplied with F’ channel by channel to obtain

the channel-weighted feature map, which is further refined
and fused by using the 1 x 1 convolution layer to obtain F'.
By filtering the channels according to the feature significance,
the network is guided to retain key features and discard
irrelevant features. The whole process can be expressed as

wen = Sigmoid(Linear(ReLU(Linear(AvgP(F')))))
F' = Convi i (wep ® F')

€))
(10)

where AvgP(-) represents the global average pool, Linear(-)
represents a fully connected layer, Sigmoid(-) represents
the Sigmoid activation function, and ® means element-wise
multiplication.

In the second stage, to efficiently model the spatial depen-
dencies between the local feature maps, the global spatial
information wg, is obtained by a 1 x 1 convolutional layer
combined with the feature maps F! and F}, followed by
a Sigmoid activation. The feature maps are then adjusted
using weights generated by the Sigmoid activation function,
highlighting the significant spatial regions in the image while
suppressing unimportant areas, which can be expressed as

(11
12)

Wep = Sigmoid(Conlel (Fll) @ Convy (Flz))
fl =wp ® F.

] ~ .
Finally, the feature map F is reconstructed using three
3 x 3 convolutions to obtain F.

III. EXPERIMENTAL RESULTS

In this section, we perform extensive experiments on seven
real hyperspectral datasets to validate the effectiveness of our
method.

A. Dataset Introduction

1) Cat Island: This dataset was acquired by the airborne
visible/infrared imaging spectrometer (AVIRIS) sensor near
Cat Island on September 12, 2010 [47], which has a spatial
size of 150 x 150, spatial resolution of 17.2 m, and a total
of 188 spectral band counts. The anomaly in the image is an
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airplane, which consists of 19 anomalous pixels, or 0.08% of
the total pixels.

2) Bay Champagne: This dataset, also acquired by the
AVIRIS sensor [47], contains 100 x 100 pixels, of which
11 pixels are considered abnormal targets, accounting for
0.11% of the total pixels. The spatial resolution is 4.4 m and
consists of 188 spectral bands after the removal of unsuitable
bands.

3) Texas Coast: This dataset was acquired at Texas Coast,
captured by the AVIRIS sensor [47], with an image having a
spatial extent of 100 x 100 and a spatial resolution of 17.2 m.
A total of 204 spectral bands were retained after excluding the
noise bands. The main anomalies are a few houses, including
67 anomalous pixels, representing 0.67% of the total number
of pixels.

4) Los Angeles: The acquisition scene of this dataset [47]
was in Loss Angeles, captured by the AVIRIS sensor on
November 9, 2011, which consisted of 100 x 100 pixels with
a spatial resolution of 7.1 m, a total of 205 spectral bands, and
a total of up to 272 anomalous pixels, accounting for 2.72%
of the total pixels.

5) HAD-100: The HAD-100 dataset was developed by
Li et al. [39], containing rich and realistic scenes.
From this dataset, we chose one of the images
(ang20191004t185054_27) and referred it to HAD-100.
This dataset was obtained by the AVIRIS-NG sensor, with a
resolution of 8.4 m and a size of 75 x 75 x 425. There are
a total of 251 abnormal pixels, accounting for 4.46% of the
total number of pixels.

6) Gulfport: This dataset was obtained by the AVIRIS sen-
sor at Gulfport [47], where the anomalous objects were three
different sized and shaped aircraft with a total of 60 anomalous
pixels, accounting for 0.6% of the total number of pixels.
The spatial range of the image is 100 x 100, with a spatial
resolution of 3.4 m and a total of 191 spectral bands.

7) Szu-Data: This dataset was captured by the Specim
FX10 hyperspectral camera installed on the drone platform of
Yuehai Campus of Shenzhen University. It is a hyperspectral
dataset with realistic and complex scenes. The size of the
dataset is 120 x 120, with a total of 25 abnormal pixels,
accounting for 0.17% of the total number of pixels. This data
consists of 112 bands with a spectral resolution of 5.5 nm,
and a spatial resolution of 0.1 m.

B. Experimental Setup

1) Comparison Methods: We introduced nine state-of-the-
art hyperspectral anomaly methods for comparison, includ-
ing traditional methods and DL-based methods. They are
DCAE [42], RGAE [31], GAED [48], GTVLRR [49], PCA-
TLRSR [50], Auto-AD [51], BS?LNet [27], DirectNet [52],
and PDBSNet [28]. Among them, GTVLRR and PCA-TLRSR
are representative representation-based methods, and the rest
are state-of-the-art DL-based methods proposed in the last
three years.

2) Experimental Settings: All experiments covered in this
article are based on the PyTorch framework. The DL-based
methods are implemented on a cluster of NVIDIA GPUs
(GeForce RTX 4060) and Intel Core i7 processors. The
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software stack runs on Linux system Ubuntu 22.04 and the
traditional methods run on MATLAB 2021b. We used the
Adam optimizer [53] with a learning rate set to le™* and
weight decay set to le™> to optimize the performance of the
MMR-HAD model efficiently.

3) Evaluation Metrics: We used evaluation metrics rec-
ognized in the field of HAD to assess the performance of
MMR-HAD and other comparative methods. The evalua-
tion metrics include anomaly detection map, box plot [54],
2-D receiver operating characteristic (ROC) curve, and area
under the ROC curve (AUC) [55]. Among them, the anomaly
detection map can visually represent the background suppres-
sion effect and anomaly detection. Through the color change,
we can quickly identify the location and intensity of the abnor-
mal pixels to evaluate the effectiveness of MMR-HAD. The
box plot, also called statistical separability analysis, is used
to evaluate the separability between background and anomaly.
ROC presents the probability of detection (PD) versus the false
alarm rate (FAR) for all possible thresholds, and curves close
to the upper left corner indicate better detection performance.
AUC is further calculated by integrating the area under the
ROC curve, and a larger AUC indicates a higher accuracy.
Ideally, an AUC of 1 means that all anomalous targets are
detected.

C. Comparative Experimental Analysis

In this article, we show the superiority of our proposed
model MMR-HAD through a large number of experiments,
and the results of seven real datasets are analyzed in detail
in the following, in which the AUC values of the datasets
are shown in Table I, the color anomaly maps are shown
in Figs. 5-11, the ROC curve chart is shown in Fig. 12,
and the box plot is shown in Fig. 13. These seven datasets
can be simply categorized into three groups according to the
size of the anomaly targets. Cat Island, Szu-data, and Bay
Champagne contain small targets; Texas Coast and Gulfport
contain medium targets; Los Angeles and HAD-100 belong to
large targets.

1) Cat Island: The AUC value of the proposed method
on this dataset is 0.9949, which is higher than the rest
of the state-of-the-art methods. As can be seen from the
anomaly maps, our method recognizes the anomaly more
accurately. While RGAE, GAED, and Auto-AD identify the
backgrounds in the lower left corner as anomalies, leading
to lower AUC values. Their ROC curve and box plot are
shown in Figs. 12(a) and 13(a), respectively. In Fig. 12(a),
the red curve of MMR-HAD is above the other curves and
closest to the upper left corner, which proves that MMR-HAD
achieves effective background reconstruction and successfully
suppresses the reconstruction of anomalies. In Fig. 13(a), the
blue boxes of DCAE and MMR-HAD are very low, which
indicates better background reconstruction.

2) Bay Champagne: This dataset has smaller anomaly
targets and simpler backgrounds. It can be seen from the AUC
values and the anomaly maps that our method is in the lead and
has some superiority, while the performance of PCA-TLRSR,
DCAE, DirectNet, and PDBSNet is also very good. From the
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TABLE I
AUC SCORES OF TEN HAD METHODS ON SEVEN DATASETS
Datasets Methods
GTVLRR PCA-TLRSR DCAE RGAE GAED Auto-AD BS°LNet DirectNet PDBSNet Ours
Cat Island 0.9787 0.9823 0.9863 0.9394 0.9222 0.9749 0.9788 0.9733 0.9775 0.9983
Bay Champagne 0.9917 0.9964 0.9954 0.8664 0.9892 0.9919 0.9820 0.9950 0.9934 0.9972
Texas Coast 0.9512 0.9926 0.9884 09822 0.9417 0.9833 0.9679 0.9883 0.9927 0.9958
Los Angeles 0.9422 0.9859 0.9960 0.9948 0.9925 0.9959 09174 0.9648 0.9946 0.9965
HAD-100 0.8642 0.9760 09841 09817 0.9506 0.9737 0.9388 0.9883 0.9851 0.9932
Gulfport 0.9881 0.9930 0.9405 0.7615 0.9678 0.9585 0.8820 0.9673 0.9845 0.9964
Szu-data 0.9733 0.9707 09811 09753 0.9806 0.9269 0.9400 0.8225 0.7993 0.9858
Average 0.9556 0.9853 0.9817 0.9288 0.9635 0.9722 0.9438 0.9571 0.9610 0.9947
(d) (e) )
(k) )
Background HEEEEENT B Anomaly
Fig. 5. Color anomaly maps obtained by different algorithms for the Cat Island dataset. (a) False color. (b) Ground truth. (¢) GTVLRR. (d) PCA-TLRSR.

(e) RGAE. (f) GAED. (g) Auto-AD. (h) BS3LNet. (i) DirectNet. (j) DCAE. (k) PDBSNet. (1) Ours.

(d)

Background BBl Anomaly

Fig. 6. Color anomaly maps obtained by different algorithms for the Bay Champagne dataset. (a) False color. (b) Ground truth. (c) GTVLRR. (d) PCA-TLRSR.
(e) RGAE. (f) GAED. (g) Auto-AD. (h) BS3LNet. (i) DirectNet. (j) DCAE. (k) PDBSNet. (1) Ours.

overall ROC curve in Fig. 12(b), MMR-HAD exhibits higher
PD and is closer to the upper left corner. Fig. 13(b) shows the
box plot of this dataset, and it can be seen that our method
MMR-HAD still has some superiority in terms of separability
between anomalies and background.

3) Texas Coast: This dataset has a large number of interfer-
ing factors in the background, so the task of anomaly detection
will be relatively difficult. As can be seen from the AUC values
and the anomaly maps, the performance of our method is the
best. From the anomaly maps of GTVLRR, GAED, and Auto-
AD, it can be seen that these three methods are highly affected
by the background. From Figs. 12(c) and 13(c), it can be seen

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded

that the five detectors, DCAE, RGAE, DirectNet, PDBSNet,
and MMR-HAD, can effectively separate the background from
the anomalies. It is proved that the proposed MMR-HAD
can effectively suppress the background and separate the
anomalous targets.

4) Los Angeles: The anomaly of this dataset is more
obvious, as can be seen from Table I, the AUC value of
our method is as high as 0.9966, which is the highest AUC
value of all methods, but the AUC values of DCAE, RGAE,
Auto-AD, and PDBSNet are all very high, just slightly lower
than our method, which indicates that these methods for
Los Angeles dataset all show good performance. However,
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() (k)

Background NN Anomaly

Fig. 7. Color anomaly maps obtained by different algorithms for the Texas Coast dataset. (a) False color. (b) Ground truth. (¢) GTVLRR. (d) PCA-TLRSR.
(e) RGAE. (f) GAED. (g) Auto-AD. (h) BS?LNet. (i) DirectNet. (j) DCAE. (k) PDBSNet. (1) Ours.

(a)

(9)

Background I Anomaly

Fig. 8. Color anomaly maps obtained by different algorithms for the Los Angeles dataset. (a) False color. (b) Ground truth. (c) GTVLRR. (d) PCA-TLRSR.
(e) RGAE. (f) GAED. (g) Auto-AD. (h) BS?LNet. (i) DirectNet. (j) DCAE. (k) PDBSNet. (1) Ours.

(a ()

Background BN TN Anomaly

Fig. 9.

Color anomaly maps obtained by different algorithms for the HAD-100 dataset. (a) False color. (b) Ground truth. (¢c) GTVLRR. (d) PCA-TLRSR.

(e) RGAE. (f) GAED. (g) Auto-AD. (h) BS3LNet. (i) DirectNet. (j) DCAE. (k) PDBSNet. (1) Ours.

their anomaly result plots are not visually obvious and it is
difficult to distinguish the distribution of detected anomalies.
Its ROC curve and box plot are shown in Figs. 12(d) and 13(d),
respectively. As can be seen in Fig. 13(d), the blue box of
MMR-HAD is narrow enough. When the false alarm rate value
is larger than 0.01, the red curves are all located above the
other curves, proving that the proposed MMR-HAD has a
higher detection rate than other methods.

5) HAD-100: This dataset has larger anomaly targets than
all the other four datasets, and as can be seen from the
resultant graphs, except for BS’LNet which detects only a
small number of anomalies, the rest of the methods detect most
of the anomalies and show good performance. However, from
the AUC value, it can be seen that our method has absolute
superiority over the competitors. As can be seen from the box
plot of Fig. 13(e), MMR-HAD performs well in terms of

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 17,2025 at 07:44:00 UTC from IEEE Xplore. Restrictions apply.



5516914 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

(© BGCHE j ' (k)
Background I T Anomaly

Fig. 10. Color anomaly maps obtained by different algorithms for the Gulfport dataset. (a) False color. (b) Ground truth. (c¢) GTVLRR. (d) PCA-TLRSR.
(e) RGAE. (f) GAED. (g) Auto-AD. (h) BS?LNet. (i) DirectNet. (j) DCAE. (k) PDBSNet. (I) Ours.

(9) (h)
Background BTl Anomaly

Fig. 11. Color anomaly maps obtained by different algorithms for the Szu-data dataset. (a) False color. (b) Ground truth. (¢) GTVLRR. (d) PCA-TLRSR.
(e) RGAE. (f) GAED. (g) Auto-AD. (h) BS?LNet. (i) DirectNet. (j) DCAE. (k) PDBSNet. (1) Ours.
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Fig. 12. ROC curves obtained by different methods for seven datasets. (a) Cat Island. (b) Bay Champagne. (c) Texas Coast. (d) Los Angeles. (e) HAD-100.
(f) Gulfport. (g) Szu-data.

background anomaly separability and the degree of back- 6) Gulfport: The anomalous targets in the Gulfport dataset
ground suppression compared to the other methods. Mean- consist of three aircraft with distinct shapes and sizes. From
while, from the ROC curve plot in Fig. 12(e), we can see that Fig. 10, it can be seen that the performance of RGAE
the ROC curve of MMR-HAD is closer to the upper left corner. and BS®*LNet is not satisfactory, especially when identifying
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Fig. 13.
(e) HAD-100. (f) Gulfport. (g) Szu-data.

the shapes of two small aircraft. This is mainly because
these methods fail to fully capture the key information of
abnormal targets when dealing with targets with significant
morphological changes, resulting in poor detection perfor-
mance. Although GTVLRR, PCA-TLRSR, GAED, Auto-AD,
DCAE, and DirectNet perform well in highlighting anomalous
targets, they fail to effectively remove the interference of
background structures while retaining background informa-
tion, which affects the accurate recognition of anomalous
targets. On the contrary, our proposed MMR-HAD method
demonstrates superior performance in handling these anoma-
lous targets, accurately identifying three aircraft of different
sizes and effectively suppressing background interference
while highlighting anomalous targets. From the ROC curve in
Fig. 12(f), it can be seen that the ROC curve of MMR-HAD
always outperforms other methods and has significant advan-
tages. From the box plot in Fig. 13(f), it can be seen that the
interval between the anomaly box and the background box of
our model is the largest, showing the strong separability of
anomalous targets and background.

7) Szu-Data: The background of the Szu-data dataset is
relatively complex, with a large number of trees as interfer-
ence factors, making the task of detecting abnormal targets
difficult. Fig. 11 shows that GTVLRR, PCA-TLRSR, and
RGAE exhibit significant performance fluctuations, failing to
effectively suppress background interference and resulting in
a weak ability to highlight and separate anomalous targets.
Although other methods such as GTVLRR, PCA-TLRSR,
and Auto-AD can constrain the background to some extent,
the recognition performance of anomalous targets is reduced.
In contrast, MMR-HAD can detect anomalous vehicles well
under complex background conditions, demonstrating signif-
icant advantages. The ROC curve in Fig. 12(g) shows our
model has higher detection performance than other methods.
From the box plot in Fig. 13(g), it can also be seen that our
method has strong separability between anomalous targets and
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Separability maps obtained by different methods for seven datasets. (a) Cat Island.
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(b) Bay Champagne. (c) Texas Coast. (d) Los Angeles.

backgrounds, further verifying the advantages of MMR-HAD
in handling complex backgrounds.

D. Ablation Study

This section conducts ablation studies on seven datasets
to evaluate the effectiveness of RM, MDABE, and MDFF,
as shown in Table II.

1) After removing the RM module, the AUC scores of
all datasets showed a significant decrease, especially on
the Texas Coast, Los Angeles, and HAD-100 datasets,
where the performance degradation was particularly
evident. This indicates that the RM module plays a
crucial role in removing abnormal pixels from data,
especially in complex backgrounds with large and clus-
tered abnormal targets. The RM module can effectively
suppress the interference of abnormal pixels on back-
ground reconstruction. By introducing the RM module,
we can significantly reduce the impact of abnormal
pixels, thereby improving the detection performance in
subsequent processing stages.

After removing the MDABE module, although the
model performance has decreased, it can still maintain
a relatively stable effect. This module utilizes convolu-
tions of different scales to capture details and global
features, and focuses on important background areas
through attention mechanisms, reducing the influence
of anomalous pixels. After removing this module, the
accuracy of background reconstruction decreased, fur-
ther demonstrating the positive role of the MDABE
module in improving background feature extraction and
enhancing robustness.

In the experiment of removing the MDFF module,
the performance of the model slightly decreased on
all the datasets. The removal of this module further
validates the importance of MDFF in feature extraction
and background information enhancement. Specifically,

2)

3)
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TABLE II
AUC SCORES OF ABLATION STUDY ON SEVEN DATASETS
Modules Datasets and AUC values
RM MDABE MDFF | Cat Island Bay Champagne Texas Coast Los Angeles HAD-100 Gulfport Szu-data
X v v 0.9390 0.9466 0.8348 0.7931 0.7264 0.8945 0.8854
v X v 0.9850 0.9879 0.9873 0.9943 0.9892 0.9686 0.9793
v v X 0.9898 0.9918 0.9934 0.9945 0.9842 0.9904 0.9841
v v v 0.9983 0.9972 0.9958 0.9965 0.9932 0.9964 0.9858
TABLE III
RUNNING TIMES (IN SECONDS) OF THE TEN CONSIDERED DETECTORS
Datasets Methods
GTVLRR PCA-TLRSR DCAE RGAE GAED Auto-AD BS°LNet DirectNet PDBSNet Ours
Cat Island 183.6259 15.1027 0.0451  0.0408 0.0738 0.1649 0.7307 0.7092 0.7191 1.0476
Bay Champagne 77.1548 6.8643 0.0359 0.0354 0.0604 0.1762 0.7028 0.6981 0.7008 1.0298
Texas Coast 89.7765 6.5868 0.0419 0.0355 0.0613 0.1744 0.6998 0.6973 0.7059 1.0257
Los Angeles 53.6805 6.6594 0.0413  0.0357 0.0607 0.1541 0.6952 0.6978 0.7048 1.0408
HAD-100 46.8024 3.8124 0.0310 0.0247  0.0468 0.1754 0.6960 0.6955 0.7074 0.9501
Gulfport 78.1602 6.8132 0.0304 0.0264 0.0477 0.1686 0.6966 0.6942 0.7001 1.0446
Szu-data 108.0734 9.6560 0.0513  0.0255 0.0502 0.1786 0.6920 0.6909 0.6996 1.1693
10 @ the floating-point operations (FLOPs, unit: G), model param-
o eters (Params, unit: M), and AUC values. The horizontal
0ss pgam ® axis represents the computational complexity of the model,
specifically, the FLOPs value, which represents the amount
000 of floating-point operations required for the model to perform
2 — detections. The vertical axis represents the detection perfor-
o8 —raE mance of the model, measured by AUC values. The size of
@ AutosD the dots in the figure reflects the number of parameters in
os0 o the model. All experimental data were evaluated based on the
o oub Gulfport dataset, ensuring the objectivity and reliability of the

4 6 7
FLOPs (G)

Fig. 14. Model complexity of eight DL-based methods.

the MDFF module effectively combines global and local
information by dynamically selecting and fusing features
of different scales, thereby enhancing the expressive
power of background information. In this way, the
MDFF module can generate pure background images
that are not affected by abnormal target interference.
Experimental results have shown that the MMR-HAD
model performs well on various datasets, demonstrating the
powerful ability of our method to remove outlier pixels and
enhance background representation. The RM strategy and mul-
tiscale extended attention module each undertake important
tasks in our method, and their synergistic effect significantly
improves the performance of the model. The RM module
first simplifies data input by removing most of the abnormal
pixels. On this basis, the MDABE module further optimizes
the reconstruction of background features. By conducting abla-
tion experiments, we verified the synergistic effect between
these modules and further demonstrated that their organic
combination in the overall framework plays an important role
in improving the model’s ability and robustness.

E. Model Complexity

In this section, we mainly evaluate the computational com-
plexity of MMR-HAD with the competitors. Fig. 14 shows

experiment.

From Fig. 14, it can be seen that the AUC value of
MMR-HAD ranks above all methods. This indicates that our
model is significantly superior to other comparison methods
in terms of accuracy and has stronger detection capabil-
ities. Although RGAE is the lightest in terms of FLOPs
and parameter count, with minimal computational complexity
and parameter count, its AUC value is significantly lower
than MMR-HAD. Compared to PDBSNet and Auto-AD, our
model significantly reduces computational complexity and
demonstrates higher computational efficiency. This advantage
enables MMR-HAD to reduce the consumption of computing
resources while ensuring detection accuracy. In terms of
parameter count, our model has significantly fewer circular
dots than Auto-AD, indicating that our model has fewer
parameters. Compared with DirectNet and BS®LNet, our
model not only significantly improves AUC performance, but
also maintains a moderate level of computational complexity.
Overall, MMR-HAD achieves a good balance between compu-
tational complexity and parameter count, effectively reducing
the consumption of computing resources while maintaining
high performance, which will facilitate the anomalous target
detection of large-scale hyperspectral datasets.

Table III shows the inference time of different anomaly
detection methods on seven hyperspectral datasets. From the
results in Table III, it can be seen that our model significantly
reduces the running time compared to traditional methods.
Although lightweight methods such as DCAE, RGAE, and
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GAED perform outstandingly in inference speed and have
shorter running times, their performance is limited. Compared
to other more complex DL methods, our model is comparable
in terms of runtime but demonstrates significant advantages
in detection accuracy. Overall, our method achieves a balance
between accuracy and efficiency when compared with all the
DL-based competitors.

IV. CONCLUSION

In this article, we propose a multiscale Mamba recon-
struction network for HAD. MMR-HAD removes most of
the anomalous pixels in HSIs by utilizing the RM strategy
to reduce the interference of these anomalous pixels on the
background reconstruction. We introduce the MDABE module
to deal with the remaining anomalous pixels to further enhance
the background representation. Finally, the background image
is reconstructed by the multiscale dynamic feature fusion
module to further refine and enhance the background infor-
mation. As a result, a purer background image is obtained.
Numerous experimental results show that MMR-HAD exhibits
superior detection performance and outperforms many existing
HAD methods. Our study introduces a new perspective on
integrating Mamba into HAD tasks, which can serve as a
cornerstone for further research in this direction.
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