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Abstract— Multispectral and hyperspectral image fusion
(MHIF) seeks to combine high-resolution multispectral images
(HR-MSIs) with low-resolution hyperspectral images (LR-HSIs)
to create high-resolution hyperspectral images (HR-HSIs).
Transformer-based architectures have recently become promi-
nent in MHIF tasks due to their effective global self-attention
mechanisms. However, the quadratic computational complexity
of the global self-attention in Transformers presents significant
challenges for practical applications. In this article, we propose
an enhanced spatial–frequency synergistic (ESFS) approach that
leverages both spatial and frequency-domain features to enhance
fusion quality. Our ESFS framework introduces the condensed
spatial augmentation module (CSAM), which condenses window
features and employs cross-attention to balance extensive con-
textual understanding and detailed local feature extraction while
reducing computational overhead. Additionally, we develop the
selective frequency decomposition module (SFDM), which utilizes
global filters composed of phase and amplitude information in the
frequency domain to retain features, effectively capturing deep
frequency-domain characteristics and their interdependencies.
Comprehensive experiments on three benchmark MHIF datasets
demonstrate that our method achieves superior performance,
establishing a new state-of-the-art (SOTA) in both quantitative
metrics and visual quality assessments. The code is available at
http://szu-hsilab.com/

Index Terms— Deep learning, Fourier transform, multispec-
tral and hyperspectral image fusion (MHIF), spatial–frequency
synergistic, Transformer-based method.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) provide extensive
spectral information across hundreds to thousands of

narrow bands, capturing the unique characteristics of various
materials. The extensive spectral information contained in
HSIs renders them indispensable for a wide range of applica-
tions, including classification [1], [2], [3], object detection [4],
tracking [5], [6], and segmentation [7], [8]. However, the
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pursuit of high spectral resolution in hyperspectral imaging
often compromises spatial resolution, leading to low-resolution
HSIs (LR-HSIs).

In contrast, multispectral imaging systems offer high spa-
tial resolution at the expense of spectral details, yielding
high-resolution multispectral images (HR-MSIs). Research in
multispectral and hyperspectral image fusion (MHIF) aims
to combine LR-HSIs with HR-MSIs to produce HSIs with
high-resolution hyperspectral images (HR-HSIs). In practice,
HR-MSIs provide crucial structural information that aids in
reconstructing higher-resolution images. MHIF technology not
only utilizes this structural information but also extracts pre-
cise spectral information from LR-HSI, resulting in enhanced
image richness and accuracy.

Current methodologies for MHIF can be broadly clas-
sified into two major categories: traditional methods and
deep learning-based approaches. Traditional methods rely
on exploiting intrinsic attributes under specific prior knowl-
edge, such as a sparse prior and self-similarity. These
include Bayesian-based methods [9] and matrix factorization-
based methods [10]. While these techniques have shown
decent results in MHIF, they still face significant chal-
lenges in efficiently transferring spatial and spectral
information.

In recent years, deep learning has achieved notable success
in MHIF, demonstrating its potential in various aspects of
image super-resolution and fusion [11]. These approaches
effectively capture high-level features from input images,
generating more accurate and detailed super-resolution images
through multiple iterations. CNNs are widely used for image
feature extraction in fusion methods [12], [13], [14], [15].
However, the relatively small receptive fields of CNNs restrict
their ability to capture global features effectively, which affects
the overall performance of CNN-based methods. As an alterna-
tive to CNNs, vision Transformer (ViT) [16] has demonstrated
impressive performance across a range of computer vision
tasks. ViT employs a self-attention mechanism that excels
at capturing global interactions by analyzing relationships
between tokens.

Recently, swin Transformer [17] has demonstrated signif-
icant potential by combining the strengths of both CNNs
and Transformers. It employs a window attention mechanism,
restricting self-attention computation to nonoverlapping local
windows, which enhances computational efficiency. Indeed,
swin Transformer for image restoration (SwinIR) [18] builds
upon the architecture of the swin Transformer, delivering
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strong performance in various low-level image processing
tasks. The three-stage architecture of SwinIR, comprising
shallow feature extraction, deep feature extraction, and image
reconstruction, has established a foundational framework for
numerous MHIF approaches [19], [20].

While recent spatial-domain models, such as multiscale
CNNs and transformer architectures, are capable of capturing
both local details and global contextual information in HSIs,
they fundamentally rely on spatial correlations within the
image. These methods excel at modeling spatial structures and
interband relationships through localized convolutional opera-
tions or attention mechanisms. However, they often implicitly
learn spatial patterns without explicitly disentangling different
frequency components of the image.

Frequency-domain analysis offers a complementary per-
spective by explicitly decomposing an image into different
frequency components, enabling a more structured understand-
ing of the information content. Specifically, low-frequency
components correspond to broad, smooth variations, while
high-frequency components capture fine-grained details such
as edges and textures. Importantly, in HSIs, subtle but critical
spectral variations often manifest differently across frequency
bands. Frequency-domain representations can more clearly
separate and highlight these variations, which may otherwise
be entangled in the spatial domain.

However, when relying solely on frequency-domain meth-
ods, some important spatial features may be lost, leading to
incomplete image representations. To address this challenge,
it is essential to combine both spatial and frequency-
domain information, as each domain captures complemen-
tary aspects of the image. While spatial-domain methods
excel at capturing spatial patterns and contextual features,
frequency-domain methods provide complementary benefits
by explicitly modeling spectral variations and enhancing dis-
criminative representations. By integrating the strengths of
both approaches, it becomes possible to preserve fine-grained
spectral details from the frequency domain while simul-
taneously capturing global dependencies, resulting in a
more accurate and comprehensive fusion of LR-HSIs with
HR-MSIs.

Compared with existing dual-domain methods such as the
spatial–frequency information integration network (SFINet)
[21], which applies fixed-window modeling and simple
fusion strategies, our method introduces specialized modules
tailored for MHIF. Specifically, we propose an enhanced
spatial–frequency synergistic (ESFS) network, which inte-
grates spatial and frequency-domain features through two
core components: the condensed spatial augmentation mod-
ule (CSAM) and the selective frequency decomposition
module (SFDM). CSAM adaptively captures fine-grained
spatial patterns while optimizing computational efficiency
by compressing attention operations. SFDM selectively
enhances informative frequency components and suppresses
noise, enabling more refined and complementary feature
representations. These modules are integrated within a
residual-guided refinement framework, allowing spatial and
frequency cues to interact progressively and synergistically,
ultimately enhancing the fusion quality of LR-HSIs and

Fig. 1. Comparison of our method and other approaches on the CAVE
(×4) and Harvard (×4) datasets. Circles located closer to the top-right corner
represent models with better performance, while the circle size corresponds
to the number of parameters in each model.

HR-MSIs. In summary, the contributions of this article are as
follows.

1) The proposed ESFS network effectively integrates the
spatial and frequency-domain features to enhance fusion
quality by leveraging the advantages of both domains.

2) CSAM achieves a balance between capturing broad
contextual information and extracting fine local details.
SFDM ensures the retention of essential frequency com-
ponents while filtering out unnecessary details.

3) Extensive experiments on three benchmark datasets
demonstrate that our method exhibits superior visual
quality compared to existing techniques and achieves
SOTA performance in quantitative metrics. Fig. 1
presents a balanced comparison with other SOTA
methods.

II. RELATED WORKS

A. Traditional Methods

Traditional MHIF methods can be categorized into
three main approaches: matrix factorization-based methods,
Bayesian-based methods, and tensor factorization-based meth-
ods. Matrix factorization-based methods often decompose
3-D HSIs into 2-D matrices of endmembers and abun-
dances. Yokoya et al. [10] employed coupled nonnegative
matrix factorization (CNMF) to independently extract these
components from HSIs and MSIs, yielding a fused image
with enhanced spectral and spatial resolutions. Other meth-
ods include joint unmixing of input images to extract pure
reflectance spectra and mixing coefficients [22] or leveraging
nonnegative dictionary learning with spatial–spectral sparsity
and nonlocal priors to improve reconstruction [23]. Li et
al. [24] further refined sparse decomposition using adaptive
techniques and iterative optimization to enhance accuracy and
adaptability.

Bayesian-based methods offer a probabilistic framework
for fusion. Akhtar et al. [25] developed a Bayesian sparse
coding approach with dictionaries learned via the Beta process,
while Wei et al. [26] proposed the Fast fUsion based on
Sylvester Equation (FUSE), combining multiplier alternating
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direction methods with block coordinate descent to incorporate
problem-specific priors.

Tensor factorization-based methods extend traditional
decomposition to high-dimensional tensors, enabling more
effective extraction of spatial–spectral information. Cou-
pled tensor approaches address the limitations of matrix
factorization-based methods by jointly modeling LR-HSIs
and HR-MSIs [27]. Methods such as coupled sparse tensor
factorization (CSTF) [28] and low tensor-train rank (LTTR)
[29] exploit spectral and nonlocal spatial correlations, laying
the groundwork for improving fusion accuracy and robust-
ness. Recent studies, such as Bayesian nonlocal patch tensor
factorization (BNPTF) [30], have tackled challenges in rank
determination and modeling capacity, achieving improved per-
formance in hyperspectral image fusion.

While these methods have laid a foundation for MHIF, their
reliance on assumptions, simplified models, and parameter
tuning can result in information loss and limited adaptability.
These shortcomings underscore the need for more flexible,
data-driven approaches like deep learning, which can better
capture the complexity of hyperspectral data.

B. Learning-Based Methods

With the advancement of deep learning, it has become
evident that this technology excels in capturing the intricate
features of HSIs and MSIs. For instance, Wang et al. [31]
were among the first to leverage deep residual CNNs to tackle
the MHIF problem. DHSIS [32] advanced HSI sharpening
for MHIF by leveraging a deep CNN-based residual learning
approach to directly learn image priors. Nonetheless, these
methods do not fully exploit the potential of deep end-
to-end learning. The spatial–spectral reconstruction network
(SSRNet) [33] presented a physically intuitive CNN architec-
ture, which employs separate loss functions for optimizing
spatial and spectral reconstruction processes. Additionally,
model-guided deep convolutional network (MoG-DCN) [34]
was introduced as an alternative to ResNet for acquiring
a denoising prior, providing a more structured approach to
capturing spatial details while effectively reducing noise.
In the pursuit of improving the spatial and spectral quality of
HSIs, GuidedNet [35] introduced a framework that integrates
multiscale high-resolution guidance, effectively reducing net-
work parameters and computational cost through recursive
strategies. Similarly, KNLConv [36] proposed an innovative
approach by incorporating nonlocal dependencies into the
convolutional kernel space, offering a more flexible and global
feature extraction mechanism that enhances performance for
HSI super-resolution.

The Transformer architecture has shown robust performance
in various vision tasks, prompting many researchers to explore
its application to MHIF. Fusformer [37] pioneered the use of
Transformers for image fusion, achieving impressive results
with a lightweight network. The multiscale spatial–spectral
Transformer network (MSST-Net) [38] incorporated a self-
supervised pre-training strategy designed to enhance the
network’s performance and generalization capabilities. Pyra-
mid shuffle-and-reshuffle Transformer (PSRT) [19] employs

the swin Transformer framework, integrating shuffle-and-
reshuffle strategies with multiscale feature extraction, thereby
enabling the learning of both local and long-range repre-
sentations. Additionally, 3DT-Net [39] adapted MoG-DCN
by replacing the U-net architecture with a Transformer-
based model. DCTransformer [20] captures the interplay
between modalities through directional pairwise multihead
cross-attention. These approaches showcase the versatility of
Transformer-based methods in enhancing MHIF.

Recently, several works have introduced more advanced
spatial-domain fusion strategies based on Transformers,
including progressive interaction and cross-modality attention
mechanisms. For example, MFT-GAN [40] incorporates mul-
tiscale spatial feature guidance within a Transformer-based
GAN framework to enhance spatial details in an unsupervised
manner. The unsupervised hybrid network of Transformer
and CNN (uHNTC) [41] combines CNNs and Transformers
in a dual-branch architecture to jointly model local spatial
textures and global spectral dependencies. The multiscale
deep cross-fusion Transformer (MDC-FusFormer) [42] and
the unsupervised multilevel spatiospectral fusion Transformer
(UMSFT) [43] both propose multiscale deep cross-fertilization
modules to enhance spatial–spectral information flow. Addi-
tionally, CYformer [44] designs a cyclic cross-modality
attention mechanism to iteratively refine intermodal alignment.

While deep learning-based methods have made significant
strides in MHIF, they primarily focus on spatial-domain fea-
ture extraction and have demonstrated strong capabilities in
capturing fine-grained textures and local spatial structures.
However, relying solely on spatial-domain features may limit
their ability to fully model the spectral correlations and global
contextual information inherent in HSIs and MSIs, particularly
in complex or multiscale scenarios.

To address such challenges, frequency-domain methods
have emerged as a promising complementary direction.
By representing signals in the spectral domain, these
approaches naturally capture long-range dependencies and
preserve global structural consistency. Rather than replacing
spatial modeling, frequency-domain analysis offers an alter-
native and synergistic perspective, highlighting the potential
benefits of integrating both spatial and frequency-domain
information to enhance fusion quality.

C. Fourier Transform

Fourier transform is widely used for analyzing frequency
components in signals, offering a comprehensive view of
long-range dependencies [45], [46]. Several researchers have
applied it to computer vision applications. For example, the
global filter network (GFNet) [47] substitutes self-attention
in vision Transformer with a Fourier transform and a learn-
able filter, enabling long-term spatial dependencies in the
frequency domain. In the field of image fusion, the Fourier
transform plays a crucial role by providing a way to handle
global frequency information, which can complement the
local spatial features extracted by spatial-domain methods.
The frequency integration and spatial compensation network
(FISCNet) [48] integrate frequency-domain phase components
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and spatial-domain features to enhance salient object preser-
vation and texture fidelity in infrared and visible image fusion.
Similarly, spatial-frequency domain fusion (SFDFusion) [49]
proposes a dual-modality approach for infrared and visi-
ble image fusion, integrating spatial-domain refinement and
frequency-domain information, leveraging FFT to enhance
image quality and efficiency. Further advancing these ideas,
SFINet [21] integrates both spatial and frequency-domain
information for multimodal image fusion, using a dual-branch
architecture with spatial convolution and modality-aware deep
Fourier transformation, enhancing both local and global fea-
ture representations. Similarly, the hierarchical frequency
integration network (HFIN) [50] hierarchically decomposes
panchromatic images and low-resolution multispectral images
into spatial, global Fourier, and local Fourier components,
and integrates them to enhance spatial-frequency relationships
for pan-sharpening. Additionally, Fourier-enhanced implicit
neural fusion network (FeINFN) [51] transforms latent
codes into the frequency domain, integrating amplitude
and phase representations while enhancing high-frequency
details. To leverage frequency-domain priors for image
restoration, FFTFormer [52] introduces a frequency-domain
self-attention mechanism and a gated feed-forward network
to enhance deblurring performance. Similarly, F2Former [53]
exploits the fractional Fourier transform to build a uni-
fied spatial-frequency representation, enabling more effective
frequency-aware attention and feature refinement. Collectively,
these studies underscore the effectiveness of the Fourier trans-
form in improving performance, particularly in complex visual
tasks such as MHIF, where capturing and integrating frequency
information is crucial for accurate image fusion.

However, while Fourier-based methods have shown great
promise in the MHIF field, many of them treat the frequency
domain and spatial domain as separate entities, without fully
exploiting the complementary properties of both. This separa-
tion limits the ability to capture the full spectrum of features
that are crucial for tasks such as image fusion, where both
local fine-grained details and global contextual information are
equally important. Frequency-domain methods can effectively
capture long-range dependencies and global information, while
spatial-domain methods excel in preserving local features,
textures, and spatial coherence.

In contrast, our proposed ESFS method integrates both
spatial and frequency-domain features, ensuring that the
advantages of both domains are leveraged to achieve supe-
rior fusion quality. By combining these two domains, ESFS
can capture both fine-grained spatial details and long-range
frequency dependencies simultaneously. The spatial domain
provides detailed local features that are essential for accurate
image reconstruction, while the frequency domain captures
global structural patterns and dependencies that may not
be immediately apparent in the spatial domain. This hybrid
approach allows ESFS to effectively merge complementary
features from both domains, leading to a more comprehensive
understanding of the input data and ultimately improving the
performance of MHIF tasks. By integrating these domains
rather than treating them separately, ESFS harnesses the
complementary strengths of spatial and frequency informa-

tion, resulting in more accurate, detailed, and robust fusion
outputs.

III. METHOD

In this section, we first present our ESFS approach specifi-
cally designed for the MHIF task. Subsequently, we introduce
the implementation of the composite modules within the
proposed architecture.

A. Overall Network Structure
We commence with a detailed exposition of the overarching

structure of our ESFS architecture, as illustrated in Fig. 2.
The network processes LR-HSI XLR

∈ Rh×w×C and HR-
MSI YHR

∈ RH×W×c as inputs to generate HR-HSI XHR
∈

RH×W×C . The term r = H/h = W/w stands for the
upsampling scale. Initially, we concatenate the bicubic inter-
polated XLR

up ∈ RH×W×C and YHR
∈ RH×W×c. Subsequently, a

3 × 3 convolutional layer is applied to the concatenated input
to extract shallow features. The extracted shallow features are
then fed into three spatial frequency residual groups (SFRGs)
to extract deep features. To capitalize on the varying levels
of information extracted by deep neural networks, the mod-
ule incorporates dense connections [54]. These connections
improve feature propagation, promote feature reuse, and mit-
igate the vanishing-gradient problem. Each SFRG integrates
these dense connections to optimize the extraction of deeper
features.

CSAM plays a critical role in enhancing spatial relation-
ships by effectively capturing spatial dependencies between
the LR-HSI and HR-MSI inputs. Specifically, CSAM uti-
lizes a condensed window multihead self-attention (CW-MSA)
mechanism to capture long-range spatial interactions, thereby
augmenting the spatial features and providing a more
context-aware representation of the input images. This refine-
ment allows the model to capture both local fine-grained
details and global spatial patterns, which are essential for
accurate fusion in MHIF tasks. Once the spatial features
are enhanced by CSAM, they are passed to the SFDM.
The reasoning behind this sequential flow is that CSAM
first focuses on enhancing the spatial resolution and con-
textual understanding of the image, which is essential for
preserving fine details. In contrast, SFDM processes these
refined spatial features by incorporating frequency-domain
information. Instead of extracting spectral features directly,
SFDM emphasizes frequency-domain dependencies, utilizing
frequency-domain transformations to capture global context
and interdependencies that are not readily apparent in the
spatial domain. This allows the model to handle global
structural information and integrate high-frequency content,
which complements the spatial features enhanced by CSAM.
By combining spatial and frequency-domain processing in a
sequential manner, our model leverages the strengths of both
domains. CSAM ensures that detailed spatial patterns are well-
preserved, while SFDM enriches the model’s understanding
of global context through frequency-based processing. This
integration leads to a more comprehensive fusion of HSIs
and MSIs, improving both the spatial and global structural
accuracy of the fused image.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 25,2025 at 07:44:59 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: ENHANCED SPATIAL-FREQUENCY SYNERGISTIC NETWORK FOR MHIF 5519316

Fig. 2. Architecture of the proposed ESFS network. (a) CW-MSA, which balances global contextual understanding and local feature enhancement by
compressing window features and applying multihead cross-attention. (b) CSAM, which enhances spatial relationships between the LR-HSI and HR-MSI by
capturing spatial dependencies effectively. (c) SFDM, designed to capture frequency-based dependencies by decomposing features into amplitude and phase
components and applying specialized convolutions. (d) FreqMLP, a frequency-domain feed-forward network that leverages group linear layers and GELU
activations for advanced frequency manipulation.

B. Condensed Spatial Augmentation Module
The CSAM is designed to enhance spatial feature extraction

by capturing spatial dependencies between LR-HSI and HR-
MSI. CSAM introduces a convolutional branch that combines
the results of the CW-MSA with convolutional operations.
This dual approach is aimed at preserving global information
captured by the attention mechanism while refining local fea-
tures through convolution, ensuring that spatial relationships
are both preserved and enhanced.

The convolutional branch is included to counteract the
potential loss of fine-grained spatial details that can occur
when relying solely on the CW-MSA mechanism. While
CW-MSA excels at capturing global context and long-range
dependencies, it may not fully capture fine local spatial
features, which are crucial for accurate fusion in MHIF tasks.
The convolutional branch is therefore designed to refine the
spatial features locally, ensuring that small-scale details are
preserved while the global dependencies are maintained.

By integrating both the attention-based and convolutional
features, CSAM effectively balances the need for global
context and detailed local feature enhancement. This hybrid
approach strengthens the model’s ability to capture complex
spatial interactions, ensuring that both long-range depen-
dencies and fine-grained spatial details are optimally fused.
Ultimately, this dual approach improves the model’s ability to
generate more accurate and coherent fused images, enhancing
the overall performance of the ESFS network.

Our proposed CW-MSA combines the global feature extrac-
tion capability of window-based attention with the local feature
enhancement of convolution. By compressing window features

through convolution, CW-MSA preserves crucial global infor-
mation while reducing computational complexity. It effectively
balances the need for extensive contextual understanding and
detailed local feature enhancement, which is critical in MHIF.
By capturing the intricate spectral–spatial relationships unique
to these modalities, CW-MSA enhances the fusion process,
leading to more accurate and representative feature extraction.
This not only optimizes computational efficiency but also
significantly improves the fidelity and quality of the fused
images, ensuring that the complementary information from
both HSI and MSI sources is fully leveraged.

CW-MSA initially condenses the original window features
into a representative feature map, which intuitively aggregates
the information of the entire window. As depicted in Fig. 2(a),
given an input feature Xin ∈ RH×W×C , it is first partitioned
into (H W/M2) local windows, with the size of each window
M × M . For a local window feature Xw ∈ RM2

×C , we first
reduce the spatial dimensions through iterative depthwise
convolutions [55], transitioning from the original dimension
M × M to a smaller dimension m × m. This reduction is
achieved through multiple iterations of depthwise convolu-
tions, each configured with a kernel size of 2 × 2 and a stride
of 2. In the first iteration, the spatial dimensions are reduced
from M × M to (M/2) × (M/2), and with further iterations,
the dimensions are progressively reduced until they reach
m × m. The resulting feature map is a coarsely condensed
aggregation map. This coarse map is then refined using depth-
wise separable convolutions [55], resulting in a condensed
refined representation Xc ∈ Rm2

×C while preserving the
channel dimensions to maintain the expressive capacity of
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the attention maps generated by each attention head. Cross-
attention is then performed using the Q ∈ RM2

×d (query)
generated from the original window features, along with the
Kc ∈ Rm2

×d (key) and Vc ∈ Rm2
×d (value) derived from the

representative feature map. The attention matrix is computed
based on the dot-product interaction between the query and the
key. The mathematical formulation of the proposed CW-MSA
is presented as follows:

Q = XwWQ, Kc = XcWK

Vc = XcWV (1)

CW-MSA(Q, Kc, Vc) = Softmax
(

QKT
c

√
d

+ B
)

Vc (2)

where WQ , WK , and WV ∈ RC×d are the projection matrices
and B ∈ RM2

×m2
represents an aligned relative position

embedding, obtained by interpolating the original embedding
defined in [17], as the window size of Q differs from that of
Kc. The term

√
d is a scalar as defined in [16]. We execute

the cross-attention function h times concurrently and then con-
catenate the outcomes to implement multihead cross-attention.
Consistent with the method described in [17], we apply shifted
window partitioning over two successive CW-MSA.

To quantify the computational benefits, we analyze the
complexity of CW-MSA and compare it to the original
window-based multi-head self-attention (W-MSA) [17]. Given
an input feature with the size of H × W , the image is divided
into nonoverlapping windows with the size of M × M , the
original W-MSA performs three distinct linear projections to
obtain the query, key, and value, followed by an additional
linear projection after the attention mechanism. This process
incurs a computational complexity of �(4M2C2). Addition-
ally, the complexity associated with the attention computation
itself is �(2M4C). The computational complexity for each
individual window is expressed as

�(Window) = 4M2C2
+ 2M4C. (3)

Thus, the total computational complexity of W-MSA can be
expressed as

�(W-MSA) = 4H WC2
+ 2M2 H WC. (4)

In contrast, as the spatial dimensions are condensed to
h × w, the size of the condensed window feature also reduces
to m × m. The proposed CW-MSA reduces the complexity of
the linear projections to �(2M2C2

+ 2m2C2). The attention
computation complexity is �(2M2m2C), as the attention
mechanism is performed over both the original and condensed
window features. The computational complexity for each
condensed window can be represented as

�(Condensed Window) = 2M2C2
+ 2m2C2

+ 2M2m2C.

(5)

The overall complexity of CW-MSA is

�(CW-MSA) = 2H WC2
+ 2hwC2

+ 2m2 H WC. (6)

Given that m ≪ M , the proposed CW-MSA offers signif-
icant advantages in addressing the computational challenges
associated with MHIF tasks. By reducing the computational

complexity, CW-MSA is particularly well-suited for handling
high-dimensional HSIs, where the burden of processing large
spatial dimensions can be substantial. This reduction in com-
plexity not only accelerates the processing speed but also
makes the approach more scalable and efficient. Consequently,
CW-MSA enhances the feasibility of applying advanced atten-
tion mechanisms to large-scale MHIF tasks.

C. Selective Frequency Decomposition Module

The architecture of the SFDM is illustrated in Fig. 2(c). The
module is designed to capture frequency-based dependencies
by selectively decomposing the input features into frequency
domains. SFDM captures intricate frequency-based depen-
dencies that are often overlooked in spatial-based models.
By decomposing the input features into distinct frequency
domains, the module can more effectively capture and leverage
spatial frequency characteristics, which are crucial for enhanc-
ing the performance of MHIF tasks.

Although the input features comprise multiple spectral
bands, SFDM primarily targets the spatial dimensions during
frequency decomposition. Specifically, the spectral channels
are jointly processed as separate feature maps, and the Fourier
transform is applied independently along the spatial axes of
each channel. This design ensures that the spectral structure
is preserved throughout the frequency operations, avoiding
disruption of interband correlations.

The frequency-domain features are extracted using the 2D-
FFT, enabling efficient transformation and analysis of spatial
frequency characteristics. This approach enhances the mod-
ule’s capacity to handle the high-dimensional data of HSIs
by focusing on frequency-specific patterns. By leveraging 2D-
FFT, the SFDM effectively captures and integrates intricate
spatial frequency features, contributing to improved perfor-
mance and precision in MHIF tasks.

Given a feature Xfea ∈ RH×W×C , we adopt 2D-FFT to obtain
the corresponding frequency representations

XF (u, v) = F(Xfea)

=

H−1∑
h=0

W−1∑
w=0

Xfea(h, w)e−2π i(uh+vw) (7)

where F(·) represents 2D-FFT, with u and v indicating
specific horizontal and vertical spatial frequencies within
the Fourier spectrum XF . XF comprises complex values,
expressed as XF = x re

f + x im
f · i , where x re

f and x im
f are the real

and imaginary components, respectively. Due to the conjugate
symmetry property, the FFT-transformed features retain only
half of the spatial dimensions. Therefore, this property also
reduces the computational complexity of the network.

In our approach, we explicitly separate the amplitude and
phase information by computing their closed-form expressions
from the real and imaginary parts, rather than learning this
separation implicitly within the network. The amplitude and
phase components are then extracted from the spectrum, which
can be expressed as follows:

A(XF ) =

√(
x re

f

)2
+
(
x im

f

)2
, P(XF ) = arctan

[
x im

f

x re
f

]
. (8)
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TABLE I
COMPARISON OF METHODS ON CAVE ×4 AND CAVE ×8 DATASETS. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLD, AND THE SECOND-BEST RESULTS ARE UNDERLINED. “M” DENOTES MILLION

The amplitude component A(XF ) ∈ RH×⌈(W+1)/2⌉×C captures
the structural information of the image, while the phase
component P(XF ) ∈ RH×⌈(W+1)/2⌉×C encodes high-frequency
details, such as textures and fine-grained variations. Accurately
merging information across different spectral bands is crucial
in MHIF tasks. Therefore, this separation of amplitude and
phase proves particularly advantageous.

Since directly applying 3 × 3 convolutions to the ampli-
tude component may result in spectral leakage and channel
misalignment [51], we employ pointwise convolutions to
preserve the spectral fidelity. Pointwise convolutions can
confine their operations to single spatial positions in the
frequency domain and effectively prevent the overlap that
could otherwise compromise the structural coherence across
channels. This approach allows for the accurate extraction
and integration of spectral information across different bands,
minimizing the risk of artifacts and ensuring the integrity
of the fused data. Conversely, the phase component, which
encodes texture details and other fine-grained information,
requires 3 × 3 convolutions to effectively capture the spatial
information. It can ensure that the edge sharpness and textural
consistency across spectral bands are accurately represented.
After feature extraction, in order to reconstruct the complete
frequency-domain representation, we combine the processed
amplitude and phase results by utilizing the polar coordinate
transformation.

The frequency domain has a significant property: multi-
plication in the frequency domain is equivalent to circular
convolution in the spatial domain, known as the Convolution
Theorem [56]. Leveraging this property, we construct a global

filter by applying max pooling to the amplitude and average
pooling to the phase. Subsequently, we enhance the global fil-
ter through convolution operations to improve its effectiveness.
By multiplying this global filter with the processed features,
we can selectively retain critical frequency information while
suppressing irrelevant details. Finally, the frequency-domain
features are transformed back to the image domain using the
inverse Fourier transform. The transform above is formulated
as follows:

X̃F = Conv1×1(A(XF )) · eConv3×3(P(XF )) (9)

G(XF ) = Conv3×3
(
Maxpool(A(XF )) · eAvgpool(P(XF ))

)
(10)

Xout = F−1(X̃F ⊙ G(XF )
)

(11)

where X̃F denotes the feature component resulting from the
convolutional integration of amplitude and phase information,
and G(XF ) represents the global filter. The term F−1 cor-
responds to the inverse Fourier transform. The symbol ⊙

denotes element-wise multiplication. The output Xout is the
selective decomposition feature map. The selective bifurcation
process effectively captures deep frequency-domain character-
istics and their interdependencies, enhancing the overall image
representation.

In addition to the frequency attention mechanism, SFDM
introduces a parallel convolutional branch to further enhance
the frequency-domain feature extraction process. The convo-
lutional branch operates in parallel with the frequency-domain
attention mechanism, and while the attention mechanism cap-
tures the global frequency dependencies, the convolutional
branch helps preserve the model’s ability to capture local
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Fig. 3. (First row) visualization of 64 feature maps out of the total
180 channels after each SFRG stage in ESFS. (Second row) Zoomed-in map
of the 95th channel across each stage, highlighting the evolution of features.

frequency details. This parallel structure ensures that the model
can process global frequency information through the atten-
tion mechanism, while the convolutional branch supports the
network in maintaining its capacity to process finer, localized
frequency features.

By introducing the convolutional branch, SFDM effectively
balances the need for capturing global frequency dependen-
cies and maintaining the ability to extract local frequency
features, enhancing the overall fusion process. This hybrid
approach ensures that SFDM can leverage both global and
local frequency-domain information, which is essential for
accurate image fusion, and results in a more precise and robust
fusion output.

We have also developed a frequency-domain feed-forward
network, referred to as frequency multilayer perceptron (Fre-
qMLP). As shown in Fig. 2(d), a filtering structure is
constructed in the frequency domain by combining group
linear layers with GELU activations.

The initial step in FreqMLP involves applying the FFT
to the input signal and converting it into the frequency
domain. The transformed signal then undergoes a group linear
layer, which performs a grouping and linear transformation
analogous to frequency decomposition. This is followed by a
GELU activation, which introduces nonlinearity and acts as a
nonlinear filter. The second group linear layer further refines
the frequency components by re-combining and fine-tuning
them. This architecture functions like a frequency-domain
filter, selectively enhancing or suppressing different frequency
components. As a result, it effectively manipulates the signal’s
frequency bands to extract nuanced features and improve the
overall representation.

The use of group linear transformation in FreqMLP intro-
duces a significant distinction from traditional fully connected
linear layers. In a standard linear layer, the model applies
the same linear transformation to all input features simulta-
neously. While this is effective in many scenarios, it may not
be the most optimal method when dealing with frequency-
domain data, where the characteristics of different frequency
components can vary significantly. By introducing a group-
wise structure, the group linear layer allows the model to
apply linear transformations within smaller, more specialized
groups of features, rather than treating the entire feature set

uniformly. This method ensures that the frequency-domain fea-
tures are processed more efficiently and effectively, allowing
the model to focus on local patterns within each fre-
quency group while preserving the global dependencies across
groups.

This approach enables FreqMLP to better capture the
complex nature of frequency-domain data, which typically
exhibits diverse patterns across different frequency bands.
The grouping mechanism allows the model to learn more
specialized transformations for each frequency group, which
improves the processing of both low-frequency and high-
frequency components in a manner that a traditional linear
layer could not achieve.

To address the differing requirements of frequency manip-
ulation in the frequency attention and FreqMLP, we apply
a separate FFT and inverse FFT in each module. In the
frequency attention module, the initial FFT is used to decom-
pose the signal into amplitude and phase components, which
are then processed independently to preserve their indi-
vidual frequency characteristics. In contrast, the FreqMLP
module applies another round of FFT to further refine the
frequency components, enabling a more sophisticated and
detailed frequency-domain filtering process. This separation
ensures that both modules can process frequency infor-
mation in ways that best suit their respective tasks, with
the inverse FFT used at the end of the FreqMLP module
to transform the manipulated features back to the spatial
domain.

By operating in the frequency domain, FreqMLP can lever-
age the inherent properties of the Fourier-transformed signal,
offering a sophisticated mechanism for handling complex
frequency information.

IV. EXPERIMENTS

A. Datasets

We thoroughly assessed our model using three prominent
MHIF benchmark datasets: the Columbia Imaging and Vision
Laboratory (CAVE) dataset [59], Harvard dataset [60], and
Washington DC Mall (WDCM) dataset [61]. The CAVE
dataset includes 32 HSIs of indoor scenes, each measuring
512 × 512 pixels and comprising 31 spectral bands. These
images were captured at intervals of 10 nm, covering a
spectral range from 400 to 700 nm. For our evaluation,
we employed the first 22 HSIs for training, designated five
HSIs for validation, and reserved the remaining five HSIs for
testing. The Harvard dataset features 50 HSIs that depict both
indoor and outdoor scenes with various objects under natural
daylight. Each HSI in this dataset consists of 31 spectral
bands, ranging from 420 to 720 nm, with a resolution of
1040 × 1392 pixels. We used the first 34 HSIs for train-
ing, designated eight HSIs for validation, and allocated the
remaining eight HSIs for testing. The HSIs from the WDCM
dataset comprise 191 spectral bands, covering wavelengths
from 400 to 2400 nm, with a spatial resolution of 2.5 m.
The dataset has spatial dimensions of 1280 × 307 pixels. For
validation and testing, two subimages of 128 × 128 pixels
were extracted from the lower-left corner of the image, while
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Fig. 4. (First and third rows) results from the CAVE dataset’s “Chart and Stuffed Toy” scene are presented using false-color representations. Red rectangles
highlight specific areas for close-up examination. (Second and fourth rows) Residual differences between the ground truth (GT) and the fusion outcomes.
(a) CNMF. (b) SSR-NET. (c) TSFN. (d) MoG-DCN. (e) MSSJFL. (f) DHIF-NET. (g) PSRT. (h) MSST-NET. (i) 3DT-Net. (j) BDT. (k) DCTransformer.
(l) ESFS (Ours). (m) Ground truth.

the remaining regions were designated for training the model.
These datasets serve as a solid foundation for examining the
effectiveness and generalization capabilities of our proposed
approach.

B. Implementation Details

Before implementing our proposed method on the CAVE,
Harvard, and WDCM datasets, we adhered to Wald’s pro-
tocol [62] to simulate LR-HSIs and HR-MSIs from the
HR-HSIs. Initially, Gaussian filtering was applied to the
HR-HSIs in these datasets, resulting in blurred images. To sim-
ulate different spatial resolutions, these blurred HSIs were
then downsampled with reduction factors of 4 and 8, thereby
producing LR-HSIs. HR-MSIs comprising three spectral bands
were generated using the spectral response matrix of the Nikon
D700 camera [33], [63]. For the WDCM dataset, the HR-MSI
comprising ten bands was created based on the spectral
response matrix of the Sentinel-2A instrument [61]. Subse-
quently, we implemented our ESFS network using PyTorch
1.12.1 in a Python 3.9 environment and trained it on an
NVIDIA A40 GPU. The network was optimized using the
Adam optimizer to train the network for 200 epochs, with a
batch size of 4. The learning rate is initialized to 0.0001 and
will decay by a factor of 2 when it reaches 100, 150, 175,
190, and 195 epochs. The mean absolute error (MAE) loss
function was employed to guide the optimization process.

C. Benchmark

To evaluate the performance of our ESFS network, we com-
pared it with several MHIF methods, incorporating a diverse
range of approaches. Specifically, we included CNMF [10],
a matrix factorization-based method; CNN-based methods,
SSR-NET [33], TSFN [12], MoG-DCN [34], MSSJFL [13],
and DHIF-Net [57]; as well as Transformer-based meth-
ods including PSRT [19], MSST-NET [38], 3DT-Net [39],
BDT [58], and DCTransformer [20]. These methods were
selected based on their demonstrated effectiveness in address-
ing the MHIF problem and their prominence within the field.
All deep learning approaches are trained using the same input
pairs to ensure a fair comparison. Additionally, the relevant
hyperparameters are chosen in alignment with those specified
in the original papers.

D. Evaluation Metrics

Four quality indicators (QIs) were employed to evaluate
the performance of the different methods: peak signal-to-
noise ratio (PSNR), root mean square error (RMSE), relative
absolute spectral error (RASE), spectral angle mapper (SAM),
and error relative global dimensionless synthesis (ERGAS).

The PSNR measures the difference between the maximum
signal value and the background noise in an image. A higher
PSNR value indicates a lower level of noise and less distortion,
thus suggesting better image quality. The formula for its
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TABLE II
COMPARISON OF METHODS ON HARVARD ×4 AND HARVARD ×8 DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN

BOLD, AND THE SECOND-BEST RESULTS ARE UNDERLINED. “M” DENOTES MILLION

calculation is given as follows:

PSNR(X, X̂) = 10 lg

(
max(Xk)

2

1
H W

∥∥Xk − X̂k
∥∥2

)
(12)

where the function max(·) denotes the maximum value of the
image, X̂ represents the estimated HR-HSI, X denotes the
ground-truth HR-HSI, with Xk and X̂k denoting the kth band
of the reference and the estimated HR-HSI, respectively.

The RMSE calculates the average difference between the
predicted and ground-truth values, offering a measure of the
model’s accuracy. The RMSE is computed as follows:

RMSE(X, X̂) =

√∑C
k=1
∑H

i=1
∑W

j=1

(
Xk(i, j) − X̂k(i, j)

)2

H WC
(13)

where Xk(i, j) and X̂k(i, j) represent the element values
at position (i, j) in the kth band of the reference and the
estimated HR-HSI, respectively.

The RASE evaluates how well the spectral information is
maintained by calculating the absolute error in each band and
normalizing it to the reference image. A smaller RASE value
indicates that the reconstructed image is closer to the reference
image in terms of spectral accuracy. The RASE is calculated
as follows:

RASE(X, X̂) =
100

H WC

C∑
k=1

H∑
i=1

W∑
j=1

∣∣Xk(i, j) − X̂k(i, j)
∣∣

|Xk(i, j)|

(14)

where the numerator is the spectral error at each pixel position
and the denominator is the spectral value of the reference
image at the corresponding position, which is multiplied by
100 to obtain the error in percentage form.

The SAM evaluates the spectral similarity between two
images, measuring the angle between the two vectors in the
spectral space. The SAM is calculated as follows:

SAM(X, X̂) =
1

H W

H W∑
k=1

cos−1
(

xT
k x̂k

∥xk∥2∥x̂k∥2

)
(15)

where cos−1 denotes the arccosine function, and xi and x̂i

represent the spectra of the i th pixel of the reference and
estimated HR-HSI, respectively.

The ERGAS assesses the relative error between the pre-
dicted and ground-truth images, providing a global measure
of the model’s performance. Thus, we have the following:

ERGAS(X, X̂) =
100
r

√√√√ 1
C

C∑
k=1

MSE(Xk, X̂k)

µ
(16)

where r is the downsampling ratio and µ denotes the
mean value of each band of the estimated HR-HSI, and
MSE(Xk, X̂k) represents the mean square error between the
i th band of the reference and the estimated HR-HSI.

These metrics collectively offer a comprehensive evaluation
of the methods’ performance, encompassing aspects of image
quality, spectral similarity, and overall global accuracy.
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Fig. 5. (First and third rows) results from the Harvard dataset’s “Gravestone” scene are presented using false-color representations. Red rectangles highlight
specific areas for close-up examination. (Second and fourth rows) Residual differences between the ground truth (GT) and the fusion outcomes. (a) CNMF.
(b) SSR-NET. (c) TSFN. (d) MoG-DCN. (e) MSSJFL. (f) DHIF-NET. (g) PSRT. (h) MSST-NET. (i) 3DT-Net. (j) BDT. (k) DCTransformer. (l) ESFS(Ours).
(m) Ground truth.

E. Results on CAVE Dataset
We test our ESFS network on the CAVE dataset with upscal-

ing factors of 4 and 8. The results are summarized in Table I.
Our experimental results demonstrate that deep learning-based
methods significantly outperform traditional model-based
approaches. Furthermore, Transformer-based models generally
surpass CNN-based methods. Focusing on the performance of
our ESFS model, we observed that it outperforms other meth-
ods across all four QIs. Specifically, in the CAVE ×4 dataset,
our ESFS model achieved a PSNR improvement of 0.88,
0.54, and 0.28 dB over 3DT-Net, BDT, and DCTransformer,
respectively. In the CAVE ×8 dataset, it achieved with
increases of 1.51, 0.71, and 0.13 dB over the same meth-
ods. Before discussing the perceptual quality, we visualize
feature maps at each SFRG stage in ESFS, as shown in
Fig. 3. These visualizations illustrate how the network pro-
gressively refines spatial and frequency features, contributing
to the superior performance observed in our model. Specif-
ically, at each stage, we selectively display 64 channel
features, including the first 16 channels, the middle 32 chan-
nels, and the last 16 channels of the total 180 channels.
Additionally, we provide a zoomed-in view of the feature
maps from the 95th channel across the three stages to
offer a detailed view of how features evolve as they pass
through the network. These visualizations demonstrate the
network’s ability to capture and enhance critical spatial and

frequency information as it progresses through each SFRG
stage.

To demonstrate the perceptual quality of diverse meth-
ods, we provide visual comparisons in Fig. 4 for the
CAVE ×8 dataset. These comparisons, including detailed
close-ups and error maps, clearly demonstrate that our fusion
results closely resemble the ground truth, achieving the highest
visual quality. In the error maps, lower brightness consistently
indicates greater similarity, with our ESFS model producing
reconstructions closest to the all-zero map, reflecting minimal
error and accurate detail preservation.

F. Results on Harvard Dataset

Our ESFS network was also evaluated on the Harvard
dataset with upscaling factors of 4 and 8, and the results are
summarized in Table II. Despite the different nature of the
dataset, the ESFS model consistently exhibited superior per-
formance across all four QIs. Unlike the CAVE dataset, where
the focus was primarily on indoor scenes, the Harvard dataset
includes a mix of indoor and outdoor scenes, challenging
the model to generalize across varied contexts. Nevertheless,
our ESFS model maintained its advantage, delivering higher
accuracy and better visual quality compared to the competing
methods. This consistent outperformance demonstrates the
robustness of our approach, not only in terms of four QIs but
also in the preservation of intricate details across a wider range
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TABLE III
COMPARISON OF METHODS ON WDCM ×4 AND WDCM ×8 DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, AND THE SECOND-BEST

RESULTS ARE UNDERLINED. “M” DENOTES MILLION

of scenes. The visual comparison in Fig. 5 further supports
these findings, showing that our ESFS model provides superior
reconstruction fidelity, especially in challenging regions with
complex textures and spectral variations. This reinforces the
effectiveness of our method in delivering high-quality image
fusion results, establishing it as a leading approach in the field.

G. Results on WDCM Dataset

Finally, we evaluated our ESFS network on the WDCM
dataset with upscaling factors of 4 and 8, with results summa-
rized in Table III. The ESFS model consistently outperformed
the other methods across all four QIs, demonstrating its robust-
ness and generalization capabilities. The WDCM dataset, with
its unique spectral range and spatial resolution, presents a dis-
tinct challenge compared to the CAVE and Harvard datasets.
Despite these differences, our ESFS model maintained its
superior performance, highlighting its adaptability and effec-
tiveness in handling diverse datasets. The visual comparison
in Fig. 6 further illustrates the exceptional quality of our
fusion results, showcasing the network’s ability to accurately
reconstruct complex scenes with high fidelity. These visual
comparisons, coupled with the quantitative results, underscore
the superior performance of our ESFS model, establishing it
as a leading approach for MHIF tasks across a wide range of
datasets.

H. Ablation Studies

1) Effectiveness of ESFS: To evaluate the effectiveness of
our ESFS network, we conducted an ablation study on the

CAVE ×4 dataset to assess the impact of the CSAM and
SFDM modules. Additionally, we further analyzed the contri-
bution of the FreqMLP, which is a sub-module within SFDM.
By systematically removing or isolating these components,
we aimed to quantify their individual contributions to the
overall performance of the network. This analysis allowed
us to gain a deeper understanding of how each component
enhances the fusion quality, both independently and syner-
gistically. Table IV highlights the significant role that both
CSAM and SFDM play in improving the fusion quality. Their
inclusion leads to superior performance, validating the design
choices and justifying their integration into the ESFS network.

As shown in Table IV, the inclusion of CSAM and SFDM
significantly improves the performance metrics across all qual-
ity indexes. Specifically, when the CSAM module is removed,
a notable drop in spectral and spatial consistency is observed,
highlighting its critical role in capturing global and local
contextual information. Similarly, removing the SFDM mod-
ule, including its FreqMLP sub-module, results in a marked
decline in overall fusion quality, especially in spectral fidelity,
as the network struggles to effectively exploit frequency-based
dependencies.

Further analysis of FreqMLP reveals its distinct contribution
within SFDM. The absence of FreqMLP leads to diminished
performance, particularly in high-frequency reconstruction
tasks, underscoring its importance in refining frequency-
specific details. These results validate the modular design of
the ESFS network, demonstrating that the combination of
CSAM and SFDM, with its embedded FreqMLP, provides
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Fig. 6. (First and third rows) results from the WDCM datasets are presented using gray representations. Red rectangles highlight specific areas for close-up
examination. (Second and fourth rows) Residual differences between the ground truth (GT) and the fusion outcomes. (a) CNMF. (b) SSR-NET. (c) TSFN.
(d) MoG-DCN. (e) MSSJFL. (f) DHIF-NET. (g) PSRT. (h) MSST-NET. (i) 3DT-Net. (j) BDT. (k) DCTransformer. (l) ESFS(Ours). (m) Ground truth.

TABLE IV
ABLATION STUDY ON THE EFFECTIVENESS OF VARIOUS COMPONENTS IN THE

ESFS NETWORK, EVALUATED ON THE CAVE ×4 DATASET

complementary benefits that collectively enhance the fusion
quality.

In addition to the removal of individual modules, we also
conducted experiments where we tested combinations of
modules, such as CSAM w/o CNN and SFDM w/o CNN,
to evaluate the impact of convolutional branches. The results
further emphasize the importance of these components, show-
ing that the convolutional branches are crucial for capturing
fine-grained spatial information. Moreover, we also investi-
gated the effect of dense connections, which were shown to
enhance feature propagation and improve model robustness,
and help mitigate the performance drop, demonstrating their
role in facilitating more efficient information flow within the
network. These experiments provide a more comprehensive
understanding of how the modules and their components
interact, confirming the necessity of their integration in the

TABLE V
ABLATION STUDY ON THE IMPACT OF DIFFERENT CONDENSED

WINDOW SIZES m IN CW-MSA, EVALUATED ON THE
CAVE ×4 DATASET

ESFS network. The ablation study confirms the robustness of
our approach and highlights the necessity of integrating these
components to achieve state-of-the-art (SOTA) performance.

2) Impact of CW-MSA on Efficiency and Performance:
To further evaluate the efficiency and performance of the
CW-MSA component, we tested different values of the
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TABLE VI
ABLATION STUDY BY REPLACING THE CSAM MODULE IN THE

ESFS NETWORK WITH DIFFERENT TRANSFORMER-BASED
ALTERNATIVES, EVALUATED ON THE CAVE ×4 DATASET

condensed window size m on the CAVE ×4 dataset. Notably,
when m = M , CW-MSA is equivalent to the original W-MSA.
Our experiments identified m = (M/4) as the optimal config-
uration, which effectively balances computational complexity
reduction with superior fusion quality. However, when the
number of iterations increases, the value of m becomes too
small, which leads to excessive compression of the window’s
spatial features and results in the loss of critical spatial
information. This degradation in spatial representation results
in reduced fusion performance. The results, as shown in
Table V, reveal that CW-MSA effectively reduces computa-
tional demands and achieves superior fusion quality compared
to the original W-MSA.

The improved performance highlights CW-MSA’s ability
to balance global contextual understanding and local feature
refinement, making it a vital enhancement to the network.
Moreover, the efficiency gain demonstrates its practicality for
real-world applications requiring high-speed processing.

However, the study also indicates that although CW-MSA
contributes to a reduction in parameters, its effectiveness in
this regard is substantially constrained by the recurrent uti-
lization of convolutional branches within each SFRG module,
which mitigates the overall parameter savings. These convo-
lutional components, while critical for extracting deep spatial
and frequency features, add to the overall network complexity,
limiting the net reduction in parameters. Despite this, the
trade-off between efficiency and accuracy firmly justifies the
inclusion of CW-MSA, as it contributes significantly to the
optimized performance of the ESFS network.

3) Impact of Replacing CSAM With Existing Transformer-
Based Modules: To assess the effectiveness of the CSAM
module in our ESFS network, we conducted an ablation study
by replacing CSAM with two representative Transformer-
based blocks: Restormer [64] and DRSformer [65]. These
modules are known for their capabilities in capturing
long-range dependencies and have demonstrated strong per-
formance in various image restoration tasks. The results of
this substitution experiment on the CAVE ×4 dataset are
summarized in Table VI.

The findings show that CSAM achieves better perfor-
mance while maintaining lower computational cost. While
Restormer and DRSformer are designed for general restora-
tion tasks and emphasize spatial context modeling, they do
not explicitly address the trade-off between modeling pre-
cision and efficiency under the constraints of multisource
fusion. In contrast, CSAM uses a fixed-ratio compressed
attention design to capture structure-aware features criti-
cal to MHIF, leading to more accurate alignment between
LR-HSIs and HR-MSIs. This task-specific adaptation enables

CSAM to outperform these alternatives in both accuracy and
efficiency.

V. CONCLUSION

In this study, we introduce an ESFS network, a novel
framework designed to address the challenges in MHIF.
ESFS leverages a synergistic integration of spatial and
frequency-domain processing to enhance the fusion pro-
cess, capturing both detailed spatial features and critical
frequency information. By employing CW-MSA mechanisms
and selective frequency transforms, the proposed network
effectively preserves spectral fidelity while improving the over-
all representation of fused images. Our experimental results
demonstrate that ESFS outperforms existing methods, offering
a significant advancement in MHIF and contributing to more
robust and reliable image analysis in remote sensing and
computer vision applications. As the proposed method has
not yet been validated on real LR-HSI and HR-MSI datasets,
there are certain constraints on assessing its overall effective-
ness. Therefore, future research should focus on conducting
comprehensive experiments with real-world datasets to further
refine and enhance the method’s performance.
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