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Abstract

The joint interpretation of hyperspectral images (HSIs) and light detection and ranging (Li-

DAR) data has developed rapidly in recent years due to continuously evolving image processing

technology. Nowadays most feature extraction methods are carried out by convolving the raw

data with fixed-size filters, whereas the structural and texture information of objects in multiple

scales can not be sufficiently exploited. In this article, a shearlet-based structure-aware filtering

approach, abbreviated as ShearSAF, is proposed for HSI and LiDAR feature extraction and clas-

sification. Specifically, superpixel-guided kernel principal component analysis (KPCA) is firstly

adopted on raw HSIs to reduce the dimensions. Then, the KPCA-reduced HSI and LiDAR data

are converted to the shearlet domain for texture and area feature extraction. In contrast, super-

pixel segmentation algorithm utilizes the raw HSI data to obtain the initial oversegmentation

map. Subsequently, by utilizing a well-designed minimum merging cost that fully considers spec-

tral (HSI and LiDAR data), texture and area features, a region merging procedure is gradually

conducted to produce a final merging map. Further, a scale map that locally indicate the filter

size is achieved by calculating the edge distance. Finally, the KPCA-reduced HSI and LiDAR

data are convolved with the locally adaptive filters for feature extraction, and a random forest

(RF) classifier is thus adopted for classification. The effectiveness of our ShearSAF approach is

verified on three real-world datasets, and the results show that the performance of ShearSAF can

achieve an accuracy higher than that of comparison methods when exploiting small-size training

sample problems. The codes of this work will be available at http://jiasen.tech/papers/ for the

sake of reproducibility.

1 Introduction

Recently, the continuously evolving remote sensing sensor technologies have contributed to the cap-

ture of multisource data in the same area [1, 2]. Among those numerous remote sensing data,
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hyperspectral images (HSIs) contain joint spectrum and space information, providing a distinctive

discriminating ability for Earth’s surface objects. HSIs have hundreds or thousands of narrow spec-

tral bands, covering the spectral region from the visible to the infrared field [3]. In particular, HSIs

have both spatial and spectral smoothness, which not only produces detailed and accurate descrip-

tions of objects but also results in a high correlation between adjacent bands [4, 5, 6]. Based on the

above reasons, some obstacles and challenges exist regarding the interpretation of HSI information.

Specifically, HSIs are prone to include information redundancy as a result of high correlation and the

Hughes phenomenon caused by a high spectral dimension [7, 8]. In addition, environmental factors,

such as clouds, noise, etc., will also cause information confusion when the remote sensor captures

scene data [9]. Compared with HSI, LiDAR integrates a laser ranging system, a global positioning

system, and an inertial navigation system, so that it can collect the position and intensity informa-

tion of objects in a three-dimensional space [10, 11, 12]. However, LiDAR works in a single band and

lacks semantic information; thus, it has poor discriminative ability in distinguishing targets with

similar heights but different spectra [13].

Many works in the literature have proven the effectiveness of combined HSI and LiDAR interpre-

tation, indicating that the intensity information provided by LiDAR can supplement the HSI defi-

ciencies regarding the target height and shape information [14, 15, 16, 17, 18]. In 2013, the HSI and

LiDAR data fusion competition, organized by IEEE Geoscience and Remote Sensing Society, greatly

promoted the research on HSI and LiDAR data fusion methods for classification [19]. In general,

these fusion methods can be roughly divided into three categories: pixel-level fusion, feature-level

fusion and decision-level fusion. The strategy of pixel-level fusion relies on concatenating multisource

data directly on the original data, which requires geometric registration. Feature-level fusion is con-

sidered as a better approach in that it can achieve better classification performance in most cases

[20, 21, 22, 23]. It conducts the feature extraction for each source individually and then combines

them. Decision-level fusion methods aim to integrate several rough classification results of multi-

source data into the final classification [24, 25]. Although the computational complexity is relatively

low, it relies heavily on the original classification results and integration strategies. In fact, due

to the inherent shortcomings of single data fusion methods, there are many articles exploring the

classification framework that combines feature-level fusion and decision-level fusion [26, 27, 28].

In addition, it must be mentioned that deep learning-based approaches is also widely favored

in recent years for hyperspectral feature extraction and classification. The pioneering work is the

stacked auto-encoders proposed by Chen et al., which has been used for hyperspectral high-level

features extraction [29]. Subsequently, convolutional neural network (CNN) [30, 31, 32] and recurrent

neural network (RNN) [33, 34] has been widely developed. Among them, the representative 3D-CNN

can effectively extract the joint spatial-spectral information and has shown good performance [35].

Furthermore, the deep learning-based framework, that combine traditional features and network

structure, has also been explored [36, 37]. However, the model parameter optimization of these deep

learning-based approaches generally relies on a large number of training samples, which greatly limits

its applicable ability due to the difficulty of sample labelling in remote sensing field. Inspired by the

small sample set circumstance, some new strategies have been developed. For example, Yu et al.

proposed a novel CNN model by combining data augmentation and 1× 1 convolutional kernel [38].

2



Figure 1: Pipeline of the shearlet-based structure-aware filtering framework for hyperspectral and
LiDAR data classification.

More recently, semi-supervised CNN and PCANet-derivative methods have also received constant

attention because of their performance with limited training samples [39, 40, 41, 42].

Alternatively, wavelet analysis is an important mathematical tool because of its optimal ap-

proximate fitness in signal processing. However, in the case of multidimensional images with a

discontinuity curve, traditional wavelet loses its sparsity on the edge response [43, 44]. Thus, the

multidimensional directional wavelet is required. Gabor, which is widely used in texture analy-

sis and feature extraction, can be considered as an early directional wavelet [45, 46]. Its inherent

drawback is that directions are restricted on each scale once sampled. There has been an emerg-

ing series of directional wavelets in the past few decades, such as contourlets, bandlets, curvelets,

and shearlets [47, 48, 49, 50]. They all provide a flexible framework in mathematical theory while

capturing the geometric features in applications. Among these methods, the shearlet possesses re-

markable properties: it accurately captures the edge direction, has an optimal sparse representation

for multidimensional data, uses a well-organized multiscale structure, and exhibits fast algorithm

implementation and efficient calculation [51, 52, 53]. In its simplest form, the shearlet starts with

the construction of the so-called mother function, and then it adopts three basic operations (scaling,

translation and direction) to provide a derivative with more shape and direction. Two well-known

properties of shearlets are highlighted as follows: 1) If a point is far away from the edge, then its

shearlet coefficient decays rapidly as the scale decreases; 2) If a point is an edge point or a corner

point, then its shearlet coefficient decays slowly in the normal direction, while it decays rapidly in

other directions. Therefore, shearlets have been widely used for edge and corner detection[54, 55, 56].

In addition, due to its frequency domain division, there are also some pioneering works using it for

denoising, feature extraction and data fusion [57, 58, 59, 60, 61].

During the past two decades in the computer vision field, another emerging and rapidly spreading
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concept is the use of superpixel segmentation. Specifically, a superpixel is considered as a homoge-

neous area containing some texture or structural similar pixels [62, 63, 64]. The edge of the superpixel

is a closed curve with continuity, which is different from scenarios encountered with edge extraction

algorithms in which continuous scattered points may exist. Moreover, the superpixel should also

possess region compactness, shape regularity and boundary smoothness [65]. Currently, superpixel

algorithms are roughly divided into three categories: cluster-based approaches represented by sim-

ple linear iterative clustering (SLIC) and simple noniterative clustering (SNIC) [66, 67], graph-based

approaches represented by entropy rate superpixel segmentation (ERS) and normalized nuts (NCut)

[68, 69], and gradient-based methods represented by spatial-constrained watershed (SCoW) and

superpixels using the shortest gradient distance (SSGD) [70, 71]. Notably, fuzzy superpixels were

proposed in the past two years and have further enriched the content of superpixels, especially in

cases of low spatial resolution such as in remote images [72, 73]. However, regardless of the kind

of superpixel algorithm, direct or indirect spatial constraints exist for compactness requirements.

For example, SLIC directly adds spatial distance to the clustering metric, and ERS requires each

superpixel to be as close to the same size as possible. This spatial constraint inevitably leads to con-

flicts between oversegmentation and undersegmentation. Moreover, the situation worsens since the

resistance of this constraint grows as a power series. In other words, due to larger space constraints,

a large homogeneous region has to be divided into several small superpixels, and a small area may

contain several objects because there is almost no spatial restriction. Nevertheless, some heuristic

solutions have been proposed for superpixel number selection [74, 75], but this inherent property of

superpixels has not been slackened effectively.

In particular, filters play an extremely important role in image processing. There are already

many filters based on different applications, such as the mean filter, Gaussian filter, Gabor filter,

etc., for feature extraction [76, 77] and the Laplacian, Sobel, Laplacian of Gaussian (LoG), etc.,

for edge capture. However, fixed size filter does not has the ability to obtain the best description

of surface objects with various scales, and thus it is undeniably difficult for a uniform size filter to

achieve globally satisfactory results. In other words, near the edge, a larger size of a filter will cause

more confusing information, whereas in the center of the region, a smaller size of the filter hardly

works well when abnormal points exist. Some researchers have made some attempts in this area,

such as the multiscale spectral-spatial classification method with adaptive filtering [78, 79, 80] and

the spatial adaptive multiscale filtering technique [81, 82]. However, the features or classification

results in multiple filtering scales were simply concatenated or combined, and it is more desirable to

take full advantage of internal structure of objects and achieve local structure-aware filtering (i.e.,

automatically adjusting the size of the filter kernel according to the local position).

In this article, we innovatively propose a shearlet-based structure-aware filtering framework, ab-

breviated as ShearSAF, for HSI and LiDAR data classification with the help of the above tools. First,

superpixel-guided kernel principal component analysis (KPCA) is adopted on raw HSIs for dimension

reduction and information focus, which is greatly helpful for subsequent calculation and processing.

Then, shearlet transform is implemented on KPCA-reduced HSI and LiDAR, and structural descrip-

tion in frequency domain is achieved, i.e., the high frequency and low frequency respectively contains

the region information and texture information. They are further processed by energy superposition
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and time-frequency conversion to attain region features and texture features. Second, a gradual re-

gion merging procedure is developed to alleviate the superpixel spatial constraints and enhance the

robustness of the proposed ShearSAF method. Specifically, the SNIC superpixel algorithm acts on

the raw HSI to address serious oversegmentation and ensure the homogeneity of each small region,

and then the superpixels are progressively combined together according to a well-designed merging

criterion that takes all the spectral information, region information and texture information into

account, eventually achieving the final merging map. Third, by locating the edge in the final merg-

ing map and calculating the shortest distance between each pixel and the edge, we can obtain a

distance map to reflect the relationship between points and edges. Through geometry optimization

and threshold processing, a scale map is also extracted to control the filter size, in which the point

value indicates the size of the convolution kernel. Thus, the adaptive-size filter for each spatial pixel

is obtained. Finally, KPCA-reduced HSI and LiDAR are convolved by these structure-aware mean

filters for feature extraction and classification to verify the effectiveness of the proposed ShearSAF

approach. For a better description, the detailed process of our ShearSAF is shown in Figure 1, and

the main contributions of this article are summarized as follows:

• First of all, we design a structure-aware filtering scheme for HSI and LiDAR feature extraction.

These locally adaptive-size filters have a small-size kernel near the edge to protect the infor-

mation from being disturbed by nearby objects, while the kernel size is larger at the center of

the area to filter noise and abnormal points. Since structure-aware filter size could reflect the

spatial structure of objects more precisely, the convolutional procedure can be more elegant

and the discriminability of extracted features can be promoted. To our best knowledge, this

is the first time a method of extracting structure-aware features for HSI and LiDAR data

processing.

• Second, shearlet transform is employed for structure description on both HSI and LiDAR

data. After dividing the shearlet features into low-frequency and high-frequency energy parts,

they are converted into area feature and texture feature, respectively. Since the local region

and edge structure of objects can be well characterized by the extracted area and texture

features, both features are taken into account (conventional methods only use either feature

for edge detection and noise reduction), which provide a valuable guidance for the subsequent

superpixel fusion.

• Third, we proposed an elaborate design to effectively combine HSI and LiDAR information

in a distance measurement for gradual region merging. The well-designed evaluation criterion

integrates the spectral (from Euclidean distance viewpoint), area and texture (from statistical

distance viewpoint) features, which provides a more comprehensive description of the real scene

and could greatly increase the structural representation ability of objects.

• Finally, all the parameters can be either preset and kept unchanged for different HSI and LI-

DAR data sets or heuristically determined, therefore the robustness and generalization ability

of the proposed ShearSAF method can be ensured. Meanwhile, since the structure-aware fea-

ture extraction procedure is unrelated to the training samples and only needed to be calculated
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once, our ShearSAF also has high efficiency. The source codes of this work will be available at

http://jiasen.tech/papers/ for the sake of reproducibility.

We would like to point out that the structure-aware filtering design presented here is essen-

tially very general and can be easily utilized for other features (such as morphological and attribute

features). Experimental results with several state-of-the-art methods on three real data sets demon-

strate the effectiveness of the proposed ShearSAF approach.

The organization of this paper is as follows. Section 2 introduces related works about shearlet

transform, SNIC superpixel algorithm and KPCA. Section 3 describes the process of designing the

shearlet-based structure-aware filtering in detail. Section 4 presents the experimental data and two

ablation experiments. The experimental results of the proposed ShearSAF method with a number

of alternatives are given in Section 5. Finally, Section 6 provides the conclusions of this paper.

2 Related Works

This section introduces the theory of shearlet transform, SNIC superpixel algorithm and KPCA.

2.1 Shearlet Transform

Shearlets have received great attention for their optimal approximation properties in representing

images and were first introduced in [83, 44]. The shearlet is regarded as a multiscale representation

system and possesses the ability to capture the direction and geometric features [54, 51]. Suppose

there exist a dilation matrix Aa =

(
a 0

0
√
a

)
and a shear matrix Ss =

(
1 s

0 1

)
(where a ∈ R+ and

s ∈ R are called the dilation factor and shear factor, respectively), the shearlet mother function is

expressed as:

ψa,s,t(x) = a−3/4ψ(A−1a S−1s (x− t)) (1)

where t ∈ R2 is a translation factor, and x ∈ R2 is the coordinate in the spatial domain. a and s

respectively controls the scale and orientation of the shearlet. In the frequency domain, function ψ

is written as ψ̂ and can be factorized as:

ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2(
ω2

ω1
) (2)

where ω1 and ω2 are the two coordinate in the frequency domain. Consequently, the ψa,s,t(x) in the

frequency domain can be expressed as follows:

ψ̂a,s,t(ω) = a
3
4 e−2πi<ω,t>ψ̂1(aω1)ψ̂2(a−

1
2 (
ω2

ω1
+ s)) (3)

where ω ∈ R2 is the coordinate in the frequency domain, which is just the concatenation of ω1

and ω2. ψ̂1 and ψ̂2 are the continuous wavelet function and bump function, respectively, meeting a

certain support domain.
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(a) (b) (c)

Figure 2: Shearlet in different frequency domain supports (left) and the corresponding time domain
supports (right). (a) low frequency, (b) horizontal cone and (c) vertical cone.

In fact, the shearlet compact framework in the frequency domain can be divided into three parts:

the low-frequency region, horizontal cone and vertical cone. Notably, the above factorization (2)

and equation (3) are used for the horizontal cone (In the following section, we renamed ψ̂a,s,t(ω) in

equation (3) as ψ̂ha,s,t(ω)). Alternatively, in the vertical cone, they are denoted as:

ψ̂(ω1, ω2) = ψ̂1(ω2)ψ̂2(
ω1

ω2
) (4)

ψ̂va,s,t(ω) = a
3
4 e−2πi<ω,t>ψ̂1(aω2)ψ̂2(a−

1
2 (
ω1

ω2
+ s)) (5)

For the low-frequency domain, the shearlet has neither dilation nor shear, so it can be written as:

φ̂a,s,t(ω) = φ̂t(ω) = e−2πi<ω,t>φ̂(ω) (6)

where φ̂ is called the scaling function. The frequency support of the low-frequency region, represen-

tative horizontal cone and representative vertical cone are shown in Figure 2.

In practice, the above continuous shearlet needs to be discretized in digital image processing. Let

us consider a single-band digital image I ∈ RX×Y mapped into a two-dimensional grid{( xX ,
y
Y )|1 ≤

x ≤ X, 1 ≤ y ≤ Y }; therefore, the related parameters, such as a, s, and t, can be computed as:

aj := 2−2j , j = 0, 1, ..., j0 − 1

sj,k := k2−j , −2j ≤ k ≤ 2j

tx,y := (
x

X
,
y

Y
), 1 ≤ x ≤ X, 1 ≤ y ≤ Y

(7)

where j0 is the number of scales. By substituting these discretized parameters (7) into equations

(3), (5) and (6), three shearlets in the frequency domain can be rewritten as (the fixed factor a
3
4 is

ignored):

ψ̂hj,k,x,y(ω) = e−2πi<ω,(
x/X
y/Y )>ψ̂1(2−2jω1)ψ̂2(2j

ω2

ω1
+ k)

ψ̂vj,k,x,y(ω) = e−2πi<ω,(
x/X
y/Y )>ψ̂1(2−2jω2)ψ̂2(2j

ω1

ω2
+ k)

φ̂x,y(ω) = e−2πi<ω,(
x/X
y/Y )>φ̂(ω)

(8)

where ω1 = −bM2 c, ..., d
M
2 e − 1 and ω2 = −bN2 c, ..., d

N
2 e − 1. To avoid overly complicated math-
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ematical formulas and theoretical derivations, we directly give the final expression of the shearlet

transform:
SH(I) =ifft2(φ̂(ω1, ω2)Î(ω1, ω2))

+ifft2(ψ̂(2−2jω1, 2
−2jkω1 + 2−jω2)Î(ω1, ω2))

+ifft2(ψ̂(2−2jω2, 2
−2jkω2 + 2−jω1)Î(ω1, ω2))

(9)

where ifft2 represents two-dimensional inverse Fourier transform, and Î(ω1, ω2) is the response of I

in the frequency domain. In this equation, the support domains of the first, second, and third parts

are the low-frequency region, horizontal cone, and vertical cone, respectively. Additional details of

shearlet construction and derivation can be found in [84].

2.2 Multi-channel SNIC

SNIC represent the simple non-iterative clustering superpixel algorithm, which has both low com-

putational complexity and good segmentation results [67]. Through parameter control in SNIC, the

number of superpixel and the weight of spectral-spatial information can be set manually. In this

arcticle, the multi-channel SNIC is adopted, which is more suitable for multi-channel hyperspec-

tral image segmentation. Specifically, SNIC starts from the initialization of the centroid and adds

the elements into a priority queue. Next, when an element is taken from the priority queue, the

surrounding pixels are marked and added to the queue. At the same time, the coordinates of the

centroid are updated accordingly. This process will continue until the queue is empty. The compar-

ison criterion of the priority queue is the distance between the elements i and centroid j, which is

defined as follows:

di,j =

√
γ1 ‖ri − rj‖2 + γ2 ‖xi − xj‖2 (10)

where r and x represent the spectral vector and space coordinates, respectively, and γ1 and γ2 are

their corresponding weights.

2.3 Superpixel-Guided KPCA

As a generalization of principal components analysis (PCA), KPCA maps the input data into a

high-dimensional or Hilbert space by a mapping function and can well reflect the complex structures

in the corresponding high-dimensional space [85, 86]. However, in the sample selection strategy of

original KPCA, random sampling and conducting all samples (there may be a million levels) strate-

gies usually cause feature degradation and computational explosion. Therefore, a superpixel-based

KPCA scheme by taking advantages of superpixel homogeneity is applied for dimension reduction

[87].

Specifically, in terms of a raw HSI R ∈ RX×Y×B (X,Y and B are respectively the spatial and

spectral dimensions), SNIC is applied (here the number of superpixels is simply as X + Y ) and

a superpixel map is obtained. Then, the mean vector of each region is calculated and forms the

input sample set r = (r1, r2, ..., rX+Y ). Subsequently, the mapping function Φ converts the input

low-dimensional sample data into a high-dimensional feature Φ(r) = (Φ(r1),Φ(r2), ...,Φ(rX+Y )).
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Let us consider the covariance matrix:

C =
1

X + Y

X+Y∑
i=1

Φ(ri)Φ(ri)
T =

1

X + Y
Φ(r)Φ(r)T (11)

Therefore characteristic equation can be denoted as:

Cβ = λβ (12)

where λ = diag(λ1, λ2, ..., λX+Y ) is a diagonal matrix composed of eigenvalues arranged from large

to small, and β = (β1,β2, ...,βX+Y ) is an (X + Y ) × (X + Y ) matrix composed of corresponding

eigenvectors. For convenience of calculation, an ingenious substitution is made for β:

β = (β1,β2, ...,βX+Y ) = (Φ(r)α1,Φ(r)α2, ...,Φ(r)αX+Y ) = Φ(r)α (13)

where α = (α1,α2, ...,αX+Y ) is the(X+Y )×(X+Y ) coefficients matrix, which is used for explaining

the relationship between β and Φ(r). Next, through simultaneously multiplying a matrix Φ(r)T by

the left-hand side of the equation (12), we can obtain:

Φ(r)TCβ =
1

n
Φ(r)TΦ(r)Φ(r)TΦ(r)α =

1

X + Y
K2α (14)

Φ(r)Tλβ = λΦ(r)TΦ(r)α = λKα (15)

where K = Φ(r)TΦ(r) is known as the kernel function. For equations (14) and (15), λKα =
1

X+Y K2α can be optimized into (X + Y )λα = Kα, which is regarded as a new characteristic

equation. Finally, for each spectral vector Ri of R, the dimensionality reduction process can be

expressed as:

Φ(Ri)
T β̄ = Φ(Ri)

T (β1,β2, ...,βK) = Φ(Ri)
TΦ(r)(α1,α2, ...,αK) (16)

where K represents the reserved dimension.

3 Shearlet-based Structure-Aware Filtering

We now consider the proposed shearlet-based structure-aware filtering design. Briefly, in order to

take full advantage of the structural information of objects, the following idea is complied: when a

certain point approaches the edge, the size of the filter will shrink, while when it is at the center, the

size of the filter will enlarge. Our ShearSAF approach to obtain this adaptive-size filter involves the

following four steps: preprocessing, shearlet-based feature extraction, gradual region merging, and

structure-aware filter designing. Table 1 summarizes some important mathematical symbols used in

this paper for additional clarification.
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Table 1: Definitions of the mathematical symbols used in the paper.

Symbol Meaning
R, H, L raw HSIs, KPCA-reduced HSIs and LiDAR
X, Y spatial dimension of HSIs and LiDAR
B, K spectral and KPCA-reserved dimension of HSIs

HE , HA texture and area features of HSIs

LE , LA texture and area features of LiDAR
GSm,n, GEm,n, GAm,n the spectral, texture and area distance

Dm,n, Cm,n regional dissimilarity and merging cost
SN initial over-segmentation map
M final merging map

D, S distance map and scale map
F structure-aware filters

Z, C classification feature and classification map

3.1 Preprocessing

This part mainly includes two aspects: superpixel-guided KPCA for HSI dimension reduction and

multi-channel SNIC for superpixel oversegmentation.

3.1.1 Superpixel-Guided KPCA for HSI Dimension Reduction

For high-dimensional HSI data with complex structures, KPCA has superior capabilities for di-

mensionality reduction. In our superpixel-guided KPCA, the radial basis function (RBF) kernel

(Ki,j = Φ(ri)
TΦ(rj) = exp(− 1

2 ||ri−rj ||2)) is adopted and 99.5% energy is maintained in the princi-

pal components. Afterward, the information-focused hyperspectral data H ∈ RX×Y×K is attained.

3.1.2 Multi-channel SNIC for Superpixel Oversegmentation

SNIC is an emerging superpixel algorithm containing both low computational complexity and good

segmentation results. The multi-channel SNIC is applied on raw HSI data R and an initial over-

segmentation map SN can be obtained, in which the homogeneity of each superpixel can be largely

ensured. Instead of directly provide the number of superpixels, the number of pixels inside each

superpixel is set as Np (the value of this parameter will be discussed in the experimental section),

and weight parameters γ1 and γ2 are set as 1/B and 0.5 as default, respectively.

3.2 Shearlet-based Feature Extraction

The shearlet is a tight framework with clear mathematical meaning that provides directional scale

decomposition. In the high-frequency part, it can effectively obtain texture information, and is thus

used for edge detection and corner detection [56]. Alternatively, in the low-frequency part, it can

effectively obtain area information, and is thus used for denoising [88].

Let us start with the single-band LiDAR data L ∈ RX×Y . The number of scale j0 in equation

(7) is set as 3 by default in our shearlet transform, while the construction of ψ̂1 (i.e., the meyer

wavelet function) and ψ̂2 (i.e., the bump function) are the same as [84].
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Figure 3: The process of obtaining texture and region description by shearlet, where the input data
is the first component of KPCA-reduced HSI data H1.

In the shearlet compact frame, when the scale is 0, 1, and 2 respectively, there are 4, 8 and 16

support cones with different directions (including the horizontal cone and vertical cone). Among

them, the 16 highest frequency part is related to the texture information, while the remaining

parts can well characterize the area information; therefore, the shearlet-based frequency features are

divided into two parts as follows:

SH(L) = SHH(L) + SHR(L) (17)

where SHH(L) and SHR(L) respectively represents the highest frequency and the rest frequency

information of the LiDAR data L.

Furthermore, for the highest frequency parts SHH(L), i.e., j = 3, the sum of coefficients in 16

directions is used as the measure of texture feature LE . For the other remaining 13 frequency parts

SHR(L), including the low-frequency region and remaining high-frequency cones with j = 1 and

j = 2, the inversion of the shearlet transform is applied to acquire the area information LA. They

can be computed as follows:

LA = inv(SHR(L)); LE = |
16∑
SHH(L)| (18)

where inv is the inversion operator, and | · | is the absolute value operator.

Correspondingly, for the KPCA-reduced HSI data H = (H1,H2, ...,HK), each component per-

forms the above frequency separation process, and then the results are concatenated. Therefore, the
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Figure 4: The gradual region merging procedure.

texture information HE and area information HA for HSI data can be express as:

HE = (HE
1 ,H

E
2 , ...,H

E
K); HA = (HA

1 ,H
A
2 , ...,H

A
K) (19)

where HE
i and HA

i contains the texture and area information of the ith component Hi, respectively.

The detailed procedure of shearlet-based feature extraction is displayed in Figure 3.

3.3 Gradual Region Merging

The previous steps provide an over-segmentation map (SN ) and three different types of description

of objects, including spectral information (H and L), area information (HA and LA) and texture

information (HE and LE). Apparently, it is advantageous to investigate the three features in an

unified framework to guide the fusion process of the oversegmentation map SN .

Specifically, the over-segmentation map SN is mapped onto an undirected graph. Each superpixel

is regarded as a node and there exists edge only when two superpixels are adjacent. In order to

make the description of the proposed progressive region merging process more clear and intuitive, it

is divided into two parts: merging cost definition and region merging procedure. Figure 4 illustrates

the gradual region merging procedure.

3.3.1 Merging Cost Definition

It can be easily found that the merging cost between two adjacent regions is not only related to

the size of the region and the length of shared edges, but also related to the similarity among the

three different kinds of features, including spectral, area and texture features. Suppose there are two

adjacent regions m and n in the over-segmentation map SN , the distance between the two regions
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Figure 5: The process of bin-based statistics.

in the spectral domain is calculated by the mean gaps and can be defined as follows:

GSm,n =

√√√√ 1

K

K∑
i=1

|Hi(m)−Hi(n)|2 + |L(m)− L(n)| (20)

where Hi(m) and L(m) represents the mean value of region m in the ith band of KPCA-reduced

HSI data H and LiDAR data L respectively.

On the other hand, for the area information (HA,LA) and texture information (HE ,LE), it

is necessary to adopt statistical manner to measure the region distance since all the area and the

texture features are extracted in the frequency domain. Taking the LiDAR texture information LE

as an example, it is firstly normalized into the interval [0, 256] for convenience. Then, we select r

interval endpoints (x1 < x2 < ... < xr, including 0 and 256) to divide the whole interval into r − 1

parts with the same length. At the same time, these r endpoints are considered as r bins in the

histogram and its value in region m is denoted as follows:

bin(i)
i=1,2,...,r

=
∑

xp∈LT (m)

(1− |xp − xi|
x2 − x1

)F (
|xp − xi|
x2 − x1

);

F (x) =

1 if 0 ≤ x ≤ 1;

0 other;

(21)

where LE(m) represents the LiDAR texture information value in region m. Thus, the frequency

histogram in region m is calculating by:

fi =
bin(i)

bin(1) + bin(2) + ...+ bin(r)
i = 1, 2, ..., r (22)

After obtaining the frequency distribution in each region, the G-statistic distance measurement

13



is applied for two adjacent regions m and n:

Gm,n =
∑
m,n

r∑
i=1

filogfi + (
∑
m,n

r∑
i=1

fi)log(
∑
m,n

r∑
i=1

fi)

−
∑
m,n

(

r∑
i=1

fi)log(

r∑
i=1

fi)−
r∑
i=1

(
∑
m,n

fi)log(
∑
m,n

fi)

(23)

Thus, the LiDAR texture distance can be expressed as GLE

m,n. Similarly, the statistical distance

of LiDAR area feature LA, denoted as GLA

m,n, can be computed in the same way. Concerning HE

and HA extracted from the hyperspectral feature H, the above statistical calculation procedure

is applied on each band, and G
HE

1
m,n, G

HE
2

m,n, ... , G
HE

K
m,n and G

HA
1

m,n, G
HA

2
m,n, ..., G

HA
K

m,n can be obtained

correspondingly.

Since the information contained in each spectral band of H and LiDAR L is inconsistent, it

is necessary to fuse these distance measures in a weighted manner, which is computed based on

the homogeneity of each segmentation area [89]. Specifically, if the segmentation area has good

homogeneity, it should has high weight. Conversely, if the segmented area is heterogeneous, the

weight value should be small. In our framework, a locally adaptive approach is implemented.

GAm,n =

K∑
j=1

max(f
HA

j

i ) ∗GHA
j

m,n +max(fL
A

i ) ∗GLA

m,n

GEm,n =

K∑
j=1

max(f
HE

j

i ) ∗GHE
j

m,n +max(fL
E

i ) ∗GLE

m,n

(24)

where max(fi) is the maximal frequency in corresponding band, while GAm,n and GEm,n represents

the area distance and texture distance respectively.

As indicated so far, the dissimilarity of two adjacent region can be defined by:

Dm,n = GAm,n +GEm,n + δGSm,n (25)

where δ is the balance factor addressing that the spectral distance and statistical distance are at the

same order of magnitude. In our experiment, δ is set as 0.001 and the interval endpoints r is set as

17.

As mentioned before, the merging cost of region m and n is not only related to the dissimilarity

Dm,n, but also related to the size of the region and the length of shared edges. The smaller the size

of the region and the larger the shared boundary between the two regions, the easier the two regions

merge together. Based on this point of view, the merging cost Cm,n of region m and n is defined as:

Cm,n =
1

Lm,n

SmSn
Sm + Sn

Dm,n (26)

where Lm,n is the length of shared boundary of region m and n, while Sm and Sn represents the

number of pixels in region m and n, respectively.
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3.3.2 Region Merging Procedure

A progressive region merging technique is introduced to effectively alleviate the conflict between

over-segmentation and under-segmentation of superpixels and largely guarantee the homogeneity of

the final merging map. Over-segmented superpixels ensure the homogeneity of each region, while

region merging that gradually combines two adjacent similar regions does not introduce an under-

segmentation problem with the help of shearlet extracted features.

Specifically, for the initial over-segmentation map SN , a data structure is utilized to record each

pair of adjacent nodes with their merging cost, and a priority queue (denoted as Q) is built to

store all these structure. Based on the queue, the structure with the smallest cost is chosen and

the corresponding two regions (called m and n for similarity) are obtained as well. Subsequently,

all structures related to m and n in the priority queue are removed. Through adding all points

in region n into region m, some new structures are created to record the reconstructed region m

and its neighborhood, which are then put into the priority queue. This progressive region merging

procedure is carried out until the number of regions reaches a predefined value N . At last, the

over-segmentation map SN is gradually transformed into a final merging map M.

3.4 Structure-Aware Filter Designing

For a point close to the edge, the surrounding labels are more likely to be different for object

classifications, indicating that the neighboring spatial relationship should have less consideration.

However, when it is located in the center of a local region, the surrounding objects tend to be the

same, thus the neighboring spatial relationship should be paid more attention. This perspective

motivates us to design an adaptive structure-aware filter whose kernel size changes with the distance

from a point to the edge.

In fact, it is difficult to obtain accurate edges between objects in HSIs due to the inherent

low-spatial resolution of remote sensing images. Fortunately, through applying the well-designed

shearlet-based gradual region merging scheme on the SNIC over-segmentation map SN , a final

merging map M with lower space constraint conflicts is thus achieved, in which the homogeneity

of local regions is largely ensured. Meanwhile, the junctions between regions are regarded as edges.

In particular, for each point p in M, its region boundary must be a continuous closed curve, which

means the number of edge points is limited. Therefore, all spatial distances between this point and

its region boundary can be calculated. The smallest value is selected to form the distance map D.

This process can be expressed by the following formula:

Dp = min
p′∈L
{
√

(px − p′x)2 + (py − p′y)2}, p ∈ P (27)

where P is the spatial position matrix of M, p′ represents a point of region boundary L, (px, py)

and (p′x, p
′
y) represents the two-dimensional spatial coordinates of point p and p′ respectively.

However, the direction from different points p to their nearest boundary point is not fixed,

implying that directly using Dp as the filtering size may cause the filter to be oversized and introduce

some disturbing information of other ground objects. As we know, the diagonal of the square is longer
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Figure 6: The process of filter size determination.

than the other inner straight lines. In other words, as long as the diagonal length of the adaptive-size

filter is less than Dp, the filter centered by point p will not exceed the boundary. Therefore, we

convert the distance map D into the so-called scale map S:

Sp = 2× b(Dp√
2

)c+ 1, p ∈ P (28)

In addition, when the point p is at the center of the region, an overly large filter size may

contain more outside-region points, which could degrade the feature representation ability. Thus, a

threshold-truncated method is introduced:

Sp =

Sp Sp > T

T Sp ≤ T
(29)

In our experiments, the threshold T is simply set as 55.

Figure 6 illustrates the three circumstances of filter size determination procedure. Concretely,

the dotted frame centered on p1 is the filter with 2 × bDp1c + 1, while the solid frame centered on

p1 is the filter with Sp1. For the point p2, the dotted frame and solid frame represent the filters

without a threshold process and with threshold process, respectively. Clearly, the dotted frames of

p1 and p2 are more precise for filter size than those two solid frames. Besides, for the region edge

point such as p3, the filter size is only 1 ∗ 1, which obeys our filter size calculation process as well.

A final note is that all the points in the scale map S are assigned an odd value ranging from 1 to

55, indicating the filter size with each pixel. For each spatial pixel p, the corresponding structure-

aware filter Fp ∈ RSp×Sp is formulated as:

Fp =
1

Sp × Sp
A[Sp,Sp], p ∈ P (30)

where A represents a matrix that all elements values are 1. Obviously, Fp can be considered as a

mean filter with adaptive size for each spatial pixel, which can be visually seen in Figure 1. Hence,

the obtained adaptive-size filter achieves structure-aware based on the geometric position of the
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Algorithm 1 ShearSAF for HSI and LiDAR feature extraction and classification

1: INPUT: raw HSI data R ∈ RX×Y×B , LiDAR data L ∈ RX×Y ;
2: OUTPUT: the classification map C ∈ RX×Y ;
3: BEGIN
4: Np = 50, j0 = 3, δ = 0.001, r = 17, T = 55;
5: using SNIC on R to obtain the over-segmentation superpixel map SN with X × Y /Np regions;
6: using KPCA on R to obtain the information-focused HSI data H ∈ RX×Y×K ;
7: using equation (18) and (19) to obtain the texture and area information HE , LE , HA and LA;
8: using equation (26) to calculate the merging cost C;
9: conducting progressive region merging procedure on SN and obtain the final merging map M ∈

RX×Y , where the number of regions N in M is calculated by equation (32);
10: using equation (27) to obtain distance map D;
11: using equations (28) and (29) to obtain scale map S;
12: using equation (30) to obtain structure-aware filter Fp for each spatial pixel p;
13: using equation (31) to obtain convolution feature Z ∈ RX×Y×(K+1) from H and L;
14: using RF classifier on Z to achieve classification map C;
15: END

convolution center. This flexible filter can well protect the difference of different objects on the

edge, while reducing the abnormal points in the center area.

3.5 Feature Extraction and Classification

Since the edges in the final merging map M may not be accurate edges, classification errors can

occur more frequently near the edge. Hence, the formulated structure-aware filter F is solely used

for feature extraction rather than regularization of classification results. Taking the LiDAR data L

as an example, the filtering process on each spatial pixel p can be expressed as follows:

ZLp
= Fp ⊗ Lp, p ∈ P (31)

where ⊗ is the convolution operator. After applying the convolution procedure on each pixel in P,

the feature ZL ∈ RX×Y can be extracted. Similarly, through applying the convolution procedure on

each band of H, the corresponding feature cube ZH ∈ RX×Y×K can be obtained. By concatenating

the both features ZL and ZH along the spectral direction, the final feature Z ∈ RX×Y×(K+1) can

be thus achieved.

During classification, random forest (RF) classifier is chosen, which can not only achieve high

classification accuracy but also possess fast computation speed. Meanwhile, RF has advantages for

anti-overfitting and anti-noise. Notably, RF is consists of two steps: randomly selecting repeatable

training subsets and building multiple decision trees, which involves bagging sampling techniques.

In the experiments, the default subspace of RF is the floor of the logarithmic value of the features,

and the number of trees in the forest is set as 500. Finally, by employing the RF classifier on the

extracted feature Z, the classification map C can be thus obtained. At last, the pseudocode of the

proposed ShearSAF approach for HSI and LiDAR feature extraction and classification is outlined

in Algorithm 1.

17



Grass Healthy
Grass Stressed
Grass Synthetic
Tree
Soil
Water
Residential
Commercial
Road
Highway
Railway
Parking Lot 1
Parking Lot 2
Tennis Court
Running Track

Figure 7: Ground-truth map of the Houston dataset (fifteen land-cover classes).

The computational complexity of our proposed ShearSAF can be divided into three parts. Firstly,

the complexity of SNIC and SNIC-guided KPCA are O(XY ) and O(XY + (X + Y )2) respectively,

while computational complexity of shearlet transform is O(XYKlog(XY )). Secondly, since the

number of adjacent nodes for a region is limited, the computational complexity of priority queue is

O(XYNp
log(XYNp

)) (Np = 50 in our experiments). Thus the complexity of the region merging process

is O((XYNp
−N)XYNp

log(XYNp
)). Finally, the computational complexity of the convolution process and

RF classification is O(XYK) and O(XY log(K)) respectively.

4 Experimental Data and Ablation Analysis

In this section, three real HSI and LiDAR datasets in diverse areas are used to evaluate the ef-

fectiveness of the proposed ShearSAF framework. Firstly, the three HSI and LiDAR datasets are

presented. Secondly, the parameters contained in ShearSAF are analyzed. Thirdly, two ablation

experiments are carried out to validate the advantage of the well-designed structure-aware filtering

scheme and the superiority of the proposed ShearSAF method over other related filters.

4.1 Datasets

1). Houston dataset : The first dataset is captured over the University of Houston campus [19],

in which the Houston HSI contains 144 spectral bands ranging from 380 to 1050nm. Each band

contains 349 × 1905 pixels with 2.5m of spatial resolution. Meanwhile, the corresponding LiDAR

data has the same spatial size with the height information of surface materials. Fifteen land-cover

classes and 15,029 labeled samples are given in the ground-truth image, as shown in Table 2 and

Figure 7.

2). Trento dataset: The second dataset is collected over the south of Trento, Italy, consisting of

63 spectral bands that range from 400 to 980nm [90]. Each band is 600 × 166 pixels with a spatial

resolution of 1m. Likewise, the LiDAR data only has one band of the same spatial size. The six

land-cover classes and 30,414 labeled pixels are listed in Table 3 and Figure 8.

3). MUUFL Gulfport Dataset : The third dataset was collected over the Gulf Park Campus of

the University of Southern Mississippi [91, 92]. The spatial size of both HSI and LiDAR data is 325

× 220 with a spatial resolution of 1m. After removing eight noisy bands from the original 72 bands

of the HSI data, 64 spectral bands are employed in the experiment. The details are given in Table

4 and Figure 9.
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Table 2: Land-cover classes in the Houston dataset.
Class Land-cover Type No. of Samples
C1 Healthy Grass 1251
C2 Stressed Grass 1254
C3 Synthetic Grass 697
C4 Trees 1244
C5 Soil 1242
C6 Water 325
C7 Residential 1268
C8 Commercial 1244
C9 Roads 1252
C10 Highways 1227
C11 Railways 1235
C12 Parking Lot 1 1233
C13 Parking Lot 2 469
C14 Tennis Court 428
C15 Running Track 660

Total 15,029

Apple Trees

Buildings

Ground

Wood

Vineyard

Roads

Figure 8: Ground-truth map of the Trento dataset (six land-cover classes).

4.2 Parameter Setting

In our proposed ShearSAF framework, there are several parameters that should be carefully specified.

Concerning the scale parameter (j0) for Shearlet transform, it is set as 3 according to their original

paper. With respect to the weight parameters for SNIC, γ1 and γ2, they respectively corresponds

to the spectral- and spatial-dimension, and thus are set as 1
B and 0.5. Meanwhile, the number of

internal endpoints r is set as 17 to facilitate the subsequent G-statistic distance computation. For

the dimension K in KPCA, the corresponding number should guarantee 99.5% energy is reserved.

In fact, there are two parameters in the gradual region merging procedure that are necessary to

be determined: the initial number of pixels inside superpixel block Np in the oversegmentation map

SN and the number of regions N in the final merging map M. In fact, it is difficult to obtain the

final number of homogeneous regions N as a fixed value for different datasets because of the impacts

of object distributions, spatial complexity and so on. Here, we propose a heuristic way to calculate
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Table 3: Land-cover classes in the Trento dataset.
Class Land-cover Type No. of Samples
C1 Apple Trees 4034
C2 Buildings 2903
C3 Ground 479
C4 Wood 9123
C5 Vineyard 10501
C6 Roads 3374

Total 30,414

Trees

Mostly Grass

Mixed Ground

Dirt and Sand

Road

Water

Building Shadow

Buildings

Sidewalk

Yellow Curb

Cloth Panels

Figure 9: Ground-truth map of the MUUFL Gulfport dataset (eleven land-cover classes).

N , which contains the class number (C), spatial complexity (σ) and space size (X and Y ).

N = b σCXY

10(X + Y )
c (32)

where b·c is the floor operator. σ is defined as follows: the Sobel operator is adopted on the three

normalized principal components of HSI and normalized LiDAR to calculate their gradients, and

then the sum of absolute values divided by 105 is used as the spatial complexity. By this heuristic

method, the σ is 7.63, 1.44, and 1.25 and the N is 3375, 112, and 180 for Houston, Trento and

MUUFL Gulfport datasets, respectively.

To prove the effectiveness of our strategy, we conduct a series of experiments to track the process

of gradual region merging and record the overall accuracy (OA, which is computed by dividing the

correctly predicted samples with the number of testing ones) varying with different Np and N . Figure

10 shows that the OA varies with the parameter Np and N for the Houston, Trento and MUUFL

Gulfport dataset. Here the parameter Np ranges from 20 to 100 with the steps of 10, and then the

parameter N ranges from 50 to 600 with the steps of 50 for the Trento dataset and MUUFL Gulfport

dataset, while it ranges from 1000 to 6000 with steps of 500 for the Houston dataset. As far as the

small sample set scenario is concerned, only 3, 5, 10 and 15 samples per class are randomly chosen
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Table 4: Land-cover classes in the MUUFL Gulfport dataset.

Class Land-cover Type No. of Samples
C1 Trees 23,246
C2 Mostly Grass 4270
C3 Mixed Ground 6882
C4 Dirt and Sand 1826
C5 Roads 6687
C6 Water 466
C7 Building Shadows 2233
C8 Buildings 6240
C9 Sidewalks 1385
C10 Yellow Curbs 183
C11 Cloth Panels 269

Total 53,687

Table 5: Parameter setting in the proposed ShearSAF approach.
Parameter Value

dimension K in KPCA 99.5% energy reserved
weight parameter γ1, γ2 in SNIC 1/B and 0.5 respectively

initial number of pixel inside superpixel Np 50
shearlet scale parameter j0 3

number of interval endpoints r in equation (21) 17
number of region in the final merging map N heuristically decided by equation (32)

from the labeled set, and the remaining labeled samples are used for testing. Each experiment is

executed 20 times to obtain the mean value. It can be seen from Figure 10 that the OA is better

when N are respectively 3500, 100 and 200 for the three data sets, which are close to the values that

are heuristically calculated by equation (32).

Two more observations can be found from Figure 10. First, the OA increases first and then

decreases with decreasing N . This is reasonable because the adjacent regions with similar objects

are merged to improve feature performance at the beginning, while two adjacent areas with different

objects are merged after N reaches the critical value, leading to a decline in classification perfor-

mance. The second is that OA has a slight increase with the decrease in Np in the three datasets. In

fact, the parameter Np is used to ensure the homogeneity of each oversegmented region so that too

many pixels inside the superpixel region would decrease the homogeneity. In the experiment, Np is

set as 50 for the three datasets, which not only keeps the region homogeneity but also promotes the

calculation speed in region merging. To be more clear, Figure 11 illustrates the result of the gradual

region merging procedure on the three data sets. It can be easily observed the structure information

of various materials can be well represented.

At last, the parameter setting in the proposed ShearSAF approach are summarized in Table

5. Apparently, all the parameters included can be either preset and kept unchanged for different

experimental datasets (such as Np, j0 and r) or heuristically computed (such as N and K), hence the

robustness and generalization ability of ShearSAF can be guaranteed, which is a distinct advantage

of the proposed ShearSAF approach.
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Figure 10: Overall accuracy vs the initial number of pixels inside superpixel (Np) and the number
of region in the final merging map (N) with different numbers of training samples per class on the
Houston dataset (first row), Trento dataset (second row) and MUUFL Gulfport dataset (third row).
The number of training samples per class is 3 (first column), 5 (second column), 10 (third column),
and 15 (last column).

4.3 Ablation Analysis

In this part, two ablation experiments are carried out to validate the effectiveness and superiority

of the proposed structure-aware filtering scheme. On the one hand, our ShearSAF is compared with

fixed-size mean filters, whose kernel sizes range from 1 to 55 with a step of 2. That is, the features

are obtained by convolving the KPCA-reduced HSI H and LiDAR L with the mean filter that has

the fixed spatial size all the time, and the RF classifier is then employed. Similarly, the experiment

is executed 20 times due to the small training sample scenario, and the OA of the mean filters with

different size on the Houston, Trento and MUUFL Gulfport datasets is illustrated in Figure 12. It

should be mentioned that the four curves from the bottom to the top (blue, red, green and black)

indicate the performance of the mean filters with fixed-size under the conditions of 3, 5, 10 and

15 training samples per class as the training set, respectively, and correspondingly, the horizontal

dotted lines from the bottom to the top (blue, red, green and black) represent the performance of

ShearSAF with the same training set, respectively.

It can be easily observed from Figure 12 that the OA of the curve rises when the filter size is

relatively small. Analytically, the ability to filter noise and abnormal points is improved as the kernel
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(a) Houston

(b) Trento (c) MUUFL Gulfport

Figure 11: The result of the gradual region merging procedure.

size increases for considering more neighborhood relations. Then, the OA drops when the filter size

increases continuously. This is because the continuous increase in the filter size will damage the

feature performance at the junctions of objects. Moreover, it can be clearly seen that our ShearSAF

approach always shows the best performance, implying that our structure-aware filter design does

protect the edges and filter the noise in the center region. Besides, it is worth mentioning that the

kernel size of the optimal filter is inconsistent for different data sets. For the three real data sets

concerned here, as illustrated in Figure 12, the optimal filter size is 9, 7 and 3 for Houston, Trento

and MUUFL Gulfport, respectively, and thus the filter size is hard to be determined in advance

in practice. Alternatively, our structure-aware filter design can automatically adjust the filter size

according to the well-designed scale map and achieve higher accuracy, indicating the advantage and

feasibility of the proposed ShearSAF approach.

Alternatively, our structure-aware design with other filters is also examined, as illustrated in

Figure 13. Here both the Gaussian and Gabor filters are taken into consideration.

Specifically, the ShearSAF-Guassian means that two-dimensional (2D) Gaussian with structure-

aware size is applied on the stacked HSI and LiDAR data. In other words, we obtain the scale

map in the same way as the ShearSAF, and each point in the obtained scale map represents the

corresponding Gaussian filter size. Then the structure-aware Gaussian filters are convolved with

the stacked HSI and LiDAR data to achieve the related features. At last, the RF classifier is

utilized for classification. Similarly, a series of 2D Gabor filters (four scales and six orientations)

with adaptive spatial size is applied on the stacked HSI and LiDAR data for feature extraction,

called ShearSAF-Gabor. It can be seen from Figure 13 that ShearSAF-Gabor performs better than

ShearSAF-Gaussian on the Trento dataset, while the opposite situation can be observed in the

Houston and MUUFL Gulfport datasets. This is reasonable since the spatial distribution of objects
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Figure 12: Overall accuracy as functions of the fixed-size mean filter on the a) Houston, b) Trento
and c) MUUFL Gulfport datasets. The dotted lines with different colors represent the classification
accuracy values of the corresponding training size by our ShearSAF.
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Figure 13: Overall accuracy of various spatial filters as functions of the number of labeled samples
per class on the a) Houston, b) Trento and c) MUUFL Gulfport datasets.

in the Trento dataset (as shown in Figure 8) is more regular than the rest two datasets (as shown

in Figure 7 and 9), the features obtained by the 2D Gabor filters with various orientations and

scales can be more specific than those extracted by the Gaussian filter. Furthermore, the proposed

ShearSAF constantly achieves the best results on the three datasets all the time, validating the

importance and suitability of the simplest mean filter for our ShearSAF approach.

5 Experimental Results

In this section, a number of state-of-the-art feature extraction and fusion algorithms are incorporated

to compare with the proposed ShearSAF approach. Firstly, two simplest methods, including the

RF classifier on the raw HSI data (named as Raw-H) and on the concatenation of both HSI and

LiDAR data (named as Raw), are used as the benchmark. Secondly, three deep learning-based

methods, 3D-CNN (3-D convolutional neural network [35], a classic deep learning-based method

that can simultaneously capture spatial-spectral joint information), miniGCN (mini-batch graph

convolutional network [93], an emerging deep learning-based method that allows to train large-scale

GCNs in a mini-batch fashion) and SAE-LR (stacked auto-encoder with logistic regression [94], an
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Figure 14: Houston dataset: (a) Overall accuracy and (b) Kappa as functions of the number of
labeled samples per class for training.
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Figure 15: Trento dataset: (a) Overall accuracy and (b) Kappa as functions of the number of labeled
samples per class for training.

auto-encoder-based deep learning method that can preserve abstract and invariant information in

deeper features), are taken into consideration for HSI and LiDAR data classification. Thirdly, five

widely-used feature extraction and fusion algorithms, that is, NMFL (nonlinear multiple feature

learning based classification [95] that explores different types of available features in a collaborative

and flexible way), EMAP (extended morphological attribute profile [96]), GGF (generalized graph-

based fusion [23]), EPCA(a novel ensemble classifier [97]) and OTVCA (orthogonal total variation

component analysis [98] that can get the best low rank representation and show strong anti-noise

ability), are also conducted on both HSI and LiDAR data. For the classification issue, 3 to 15

samples per class are randomly selected from the labeled dataset to form the training set, while

the rest are used for the testing set. At the same time, each experiment is run twenty times in

order to reduce the effects of random factors. Both the mean values and standard deviations are

reported. Except the OA measure, the kappa coefficient (κ), which reflects the impact of classes, is

also adopted to evaluate the classification performance.
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Figure 16: MUUFL Gulfport dataset: (a) Overall accuracy and (b) Kappa as functions of the
number of labeled samples per class for training.

Figures 14-16 show the OA and κ of the eleven compared methods including the Raw-H, Raw,

3D-CNN, miniGCN, SAE-LR, NMFL, EPCA, GGF, EMAP, OTVCA and our ShearSAF when the

training set ranges from 3 to 15. It should be noted that, the OA obtained by a single LiDAR data

is much smaller than that of other methods; thus, it has not been added for comparison. Generally,

the classification performs better as the number of training sample grows for the three datasets.

Compared to the Raw method, the performance of the Raw-H that just uses HSI data shows lower

classification accuracies, confirming that the supplement of LiDAR information can improve the

performance of HSI classification. Specifically, HSI data provides abundant spectral information

for distinguishing materials with different physical properties, while LiDAR provides shape and

height information that can be used to distinguish different targets of the same material. For the

rest compared methods, the proposed ShearSAF outputs the highest results all the time, which is

reasonable since the designed structure-aware filters can reduce its size to avoid interclass interference

at the near edge and introduce more neighborhood information to reduce the environmental impact

at the region center.

In addition, it should be noted that deep-learning based methods behaved badly for three dataset

for limited training samples. Specifically, SAE-LR gives the worst performance on the Houston and

MUUFL Gulfport dataset, while 3D-CNN performed the worst on the Trento dataset and the second

worst on the Houston dataset. As for miniGCN, it is also lower than the traditional classification

method in most cases. Analytically, the deep learning-based methods usually need a great quantity of

training samples to constantly modify the magnanimous parameters in the process of training model.

But the small sample set in the experiments significantly limits the performance of deep learning-

based methods. Meanwhile, the training process of deep learning methods requires considerable

time consumption as well.

Furthermore, when there are only five training samples per class, the classification performances,

including each class accuracy, OA and κ of the eleven methods, have been summarized in Tables 6-8

for the Houston, Trento and MUUFL Gulfport datasets, respectively. It can be seen that ShearSAF

outputs the best performance in most cases, which favors the superiority of our ShearSAF method.
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Table 6: Classification performance using Raw-H, Raw, 3D-CNN, miniGCN, SAE-LR, NMFL,
EPCA, GGF, EMAP, OTVCA and ShearSAF for the Houston dataset with five labeled samples
per class as the training set.

Class RAW-H RAW 3D-CNN miniGCN SAE-LR NMFL EPCA GGF EMAP OTVCA ShearSAF
C1 86.49 86.81 77.37 91.52 68.78 79.98 86.76 79.20 86.18 73.49 91.97
C2 72.20 72.62 72.07 76.09 50.45 80.47 78.90 78.54 69.67 70.37 82.66
C3 93.67 94.78 91.53 97.27 94.33 100.00 100.00 99.91 99.89 98.44 98.16
C4 91.48 92.32 59.31 89.70 90.43 78.17 90.81 92.85 79.76 73.47 95.61
C5 78.61 78.86 92.61 98.18 72.20 91.86 88.29 79.10 83.21 90.93 89.67
C6 85.23 85.43 60.21 85.69 34.49 85.72 90.80 88.65 89.02 86.12 91.25
C7 56.28 61.06 30.32 70.82 36.17 76.96 75.71 83.64 70.12 55.22 70.81
C8 36.13 38.50 49.11 45.07 60.84 47.90 62.19 52.70 42.49 46.19 47.63
C9 64.72 65.43 30.73 48.84 65.79 47.45 71.87 72.20 65.41 54.39 73.78
C10 41.32 41.58 46.54 45.16 9.38 61.74 63.13 66.15 61.56 65.93 67.85
C11 50.94 52.39 47.65 49.00 26.56 49.77 84.10 72.15 68.49 75.87 74.91
C12 32.24 34.30 29.78 56.56 17.38 45.91 49.42 59.25 46.13 53.21 56.36
C13 21.80 23.34 26.48 32.05 26.63 43.04 58.73 48.62 58.66 77.88 86.11
C14 93.52 94.07 72.20 78.25 59.42 96.61 98.75 96.30 98.04 98.96 99.24
C15 86.63 86.70 86.06 99.42 37.09 98.68 99.75 98.30 98.58 98.30 99.98
OA 63.96 65.20 56.57 69.62 50.60 69.66 75.90 76.12 71.32 71.42 78.38

Kappa 0.61 0.62 0.53 0.67 0.47 0.67 0.74 0.74 0.69 0.69 0.77

Table 7: Classification performance using Raw-H, Raw, 3D-CNN, miniGCN, SAE-LR, NMFL,
EPCA, GGF, EMAP, OTVCA and ShearSAF for the Trento dataset with five labeled samples
per class as the training set.

Class RAW-H RAW 3D-CNN miniGCN SAE-LR NMFL EPCA GGF EMAP OTVCA ShearSAF
C1 80.10 79.99 80.21 66.94 83.49 65.62 87.49 95.32 91.13 94.07 95.82
C2 70.52 74.02 65.58 61.76 79.91 80.81 90.75 84.77 86.26 67.09 92.43
C3 96.00 96.25 88.66 86.62 72.51 84.80 82.09 96.42 98.09 86.94 89.95
C4 92.68 93.24 71.96 83.87 98.77 96.38 98.01 91.78 96.92 97.98 98.77
C5 72.14 72.58 53.36 67.59 89.66 69.26 69.45 82.11 85.15 91.28 98.23
C6 56.73 60.87 55.60 76.50 62.84 79.45 76.28 73.47 79.01 66.70 68.70
OA 78.01 79.09 64.53 73.10 87.56 80.39 83.45 86.43 89.76 89.57 93.62

Kappa 0.71 0.73 0.54 0.65 0.84 0.74 0.78 0.82 0.87 0.86 0.91

In more detail, considering the C5 class (Vineyard) of the Trento dataset, it can be found from

the ground-truth map (Figure 8) that the spatial distribution of C5 is very regular, and ShearSAF

effectively filters the noise in the area and protects the edges; thus, the performance increases from

72.58% for the RAW method to 98.23% for our approach, as illustrated in Table 7. Alternatively,

concerning the C10 class (Yellow Curbs) of the MUUFL Gulfport dataset in Table 8, it has scattering

in the scene and is even hard to be seen in Figure 9. Although our method is not optimal in the

C10 class, this structure-aware filter does work for reducing its own size and keeping the target

information from being interfered by neighboring objects. To illustrate, the groundtruth and the

complete classification maps for all the three datasets of the eleven compared methods are shown in

Figures 17-19. It can be easily observed that our ShearSAF approach is outstanding compared to

the others, demonstrating the effectiveness of the proposed method.

Finally, when there are five training samples per class, the computation time is given in Table 9,

which was recorded by a workstation with a 24-core Intel processor at 2.20 GHz with 128 GB RAM.

As expect, the deep learning-based method (3D-CNN, miniGCN and SAE-LR) takes more times

than the others because model training and parameter optimization require considerable time. It
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Table 8: Classification performance using Raw-H, Raw, 3D-CNN, miniGCN, SAE-LR, NMFL,
EPCA, GGF, EMAP, OTVCA and ShearSAF for the MUUFL Gulfport dataset with five labeled
samples per class as the training set.

Class RAW-H RAW 3D-CNN miniGCN SAE-LR NMFL EPCA GGF EMAP OTVCA ShearSAF
C1 67.06 70.45 83.15 79.98 68.09 69.77 63.27 61.10 70.13 75.05 83.52
C2 70.85 71.44 68.84 90.58 58.11 67.42 70.54 72.06 73.26 53.32 72.54
C3 42.47 42.95 37.43 38.60 30.16 50.18 36.47 52.52 40.68 32.49 58.26
C4 47.33 47.38 61.81 59.96 61.73 68.54 46.71 49.72 61.84 63.78 65.74
C5 69.63 72.68 66.42 81.13 57.12 73.75 76.04 79.67 80.58 54.02 82.70
C6 84.24 86.15 61.03 94.41 65.21 98.40 97.99 96.78 96.75 99.87 87.55
C7 62.38 68.86 71.62 76.19 55.73 72.29 82.60 76.64 77.69 74.99 89.25
C8 32.23 39.17 74.54 78.41 79.28 59.27 73.59 52.81 70.90 66.80 64.08
C9 42.46 43.83 38.06 40.08 29.70 45.47 39.57 45.62 39.87 34.40 48.61
C10 61.07 61.64 49.21 76.40 40.82 84.78 53.33 61.45 59.73 69.40 61.72
C11 90.37 90.65 61.23 72.30 42.86 74.31 93.09 88.90 94.33 96.49 89.96
OA 59.23 62.32 70.28 68.69 60.40 66.11 63.25 62.53 68.05 64.60 72.30

Kappa 0.50 0.53 0.62 0.62 0.51 0.58 0.55 0.54 0.60 0.56 0.65

Table 9: The running time (in seconds) for different algorithms when five samples per class are used
for training.

Methods 3D-CNN miniGCN SAE-LR NMFL EPCA GGF EMAP OTVCA ShearSAF
Houston 2576.78 9105.33 7576.49 681.47 896.98 621.54 482.40 1092.23 462.73
Trento 324.52 1628.74 1348.92 79.75 95.28 70.10 46.56 181.33 43.04

MUUFL Gulfport 296.60 1261.83 1120.77 65.76 77.74 56.05 36.76 144.31 34.58

can be observed that the time cost of our ShearSAF method is less than that of the other methods,

which is mainly due to the irrelevance of the structure-aware feature extraction procedure with the

training set. That is to say, the feature extraction procedure in ShearSAF method is executed only

once, while RF classifier has low computational cost, therefore the proposed ShearSAF method is

computationally efficient is applicable for remote sensing image with large spatial size, which proves

the superiority of our method once again.

6 Conclusions

In this paper, a newly-designed shearlet-based structure-aware filtering approach has been proposed

for HSI and LiDAR feature extraction. Specifically, the shearlet transform is implemented on the

KPCA-reduced HSI and LiDAR data for area and texture feature extraction. Then, the spectral,

area and texture features are used to guide the gradual region merging procedure, which converts

the initial over-segmentation map into a final merging map, and the spatial structure of objects can

be well characterized. By calculating the edge distance in the final merging map, the scale map can

be acquired, which is utilized to adaptively select the filter size for convolution. Finally, the RF

classifier is used for classification.

In summary, the most important contribution of this article involves the design of the structure-

aware filtering design. In this process, we innovatively proposed a shearlet-based area and texture

feature representation that could effectively measure the distance between two adjacent areas. At

the same time, the structure-aware filter is constructed in an elegant manner to ensure that the
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(a) Ground truth (b) Raw-H (63.78%)

(c) Raw (65.65%) (d) 3D-CNN (58.71%)

(e) miniGCN (67.99%) (f) SAE-LR (51.06%)

(g) NMFL (69.73%) (h) EPCA (75.92%)

(i) GGF (75.99%) (j) EMAP (71.59%)

(k) OTVCA (71.53%) (l) ShearSAF (78.79%)

Figure 17: Houston dataset: a) Ground truth map, the rest are classification maps obtained by b)
Raw-H, c) Raw, d) 3D-CNN, e) miniGCN, f) SAE-LR, g) NMFL, h) EPCA, i) GGF, j) EMAP, k)
OTVCA and l) ShearSAF when the number of training samples is five per class (the percentage in
the brackets is the corresponding accuracy).

pixel near the edge could has a small-size kernel to protect the information from being disturbed

by nearby objects, while the point at the center of the area could has a larger kernel size to filter

noise and abnormal points. Two ablation experiments with various fixed-size mean filters and other

adaptive-size filters (Gaussian and Gabor) demonstrate the effectiveness of the proposed ShearSAF

method. Meanwhile, comparison with several state-of-the-art methods (3D-CNN, miniGCN, SAE-

LR, NMFL, EPCA, GGF, EMAP and OTVCA) constantly show the superiority of the proposed

ShearSAF approach. At last, we still want to emphasize that the structure-aware filtering design

presented here can be further embedded with other kinds of feature. For instance, manifold learning-

based methods, such as LLE (locally linear embedding) and ISOMAP (isometric mapping), can be

used for dimension reduction and feature extraction. Furthermore, structure-aware filter design

pattern can be integrated with other central-based filters (including Gaussian and Median filter) to
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(a) Ground truth (b) Raw-H (78.37%) (c) Raw (80.22%)

(d) 3D-CNN (64.16%) (e) miniGCN (72.40%) (f) SAE-LR (87.74%)

(g) NMFL (80.37%) (h) EPCA (83.66%) (i) GGF (86.90%)

(j) EMAP (88.97%) (k) OTVCA (89.86%) (l) ShearSAF (93.80%)

Figure 18: Trento dataset: a) Ground truth map, the rest are classification maps obtained by b)
Raw-H, c) Raw, d) 3D-CNN, e) miniGCN, f) SAE-LR, g) NMFL, h) EPCA, i) GGF, j) EMAP, k)
OTVCA and l) ShearSAF when the number of training samples is five per class (the percentage in
the brackets is the corresponding accuracy).

extract discriminative feature and improve the robustness of the whole framework. All these aspects

are worthy of more attention.
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Processing. Morgan & Claypool, Dec. 2011.

[3] J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot,

“Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based ap-

proaches,” J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379, 2012.

[4] J. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot,

“Hyperspectral remote sensing data analysis and future challenges,” IEEE Geosci. Remote

Sens. Mag., vol. 1, no. 2, pp. 6–36, Jun. 2013.

[5] M. Khodadadzadeh, J. Li, S. Prasad, and A. Plaza, “Fusion of hyperspectral and lidar remote

sensing data using multiple feature learning,” IEEE J. Sel. Top. Appl. Earth Observ. Remote

Sens., vol. 8, no. 6, pp. 2971–2983, 2015.

30



[6] M. Kishore and S. Kulkarni, “Approches and challenges in classification for hyperspectral data:

A review,” in Proc. Int. Conf. Electr. Electron. Optim. Techn. (ICEEOT), Mar. 2016, pp.

3418–3421.

[7] S. Jia, Z. Zhu, L. Shen, and Q. Li, “A two-stage feature selection framework for hyperspectral

image classification using few labeled samples,” IEEE J. Sel. Top. Appl. Earth Observ. Remote

Sens., vol. 7, no. 4, pp. 1023–1035, Apr. 2014.

[8] Y. Zhou, J. Peng, and C. Chen, “Dimension reduction using spatial and spectral regularized

local discriminant embedding for hyperspectral image classification,” IEEE Trans. Geosci. Re-

mote Sens., vol. 53, no. 2, pp. 1082–1095, Feb. 2015.

[9] P. Hartzell, C. Glennie, and S. Khan, “Terrestrial hyperspectral image shadow restoration

through lidar fusion,” Remote Sens., vol. 9, no. 5, 2017.

[10] S. Sun and C. Salvaggio, “Aerial 3d building detection and modeling from airborne lidar point

clouds,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1440–1449,

2013.

[11] C. Paris and L. Bruzzone, “A three-dimensional model-based approach to the estimation of the

tree top height by fusing low-density lidar data and very high resolution optical images,” IEEE

Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 467–480, 2015.
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(a) Ground truth (b) Raw-H (59.12%) (c) Raw (62.34%) (d) 3D-CNN (69.23%)

(e) miniGCN (69.01%) (f) SAE-LR (60.28%) (g) NMFL (66.75%) (h) EPCA (63.75%)

(i) GGF (62.51%) (j) EMAP (68.70%) (k) OTVCA (64.45%) (l) ShearSAF (72.98%)

Figure 19: MUUFL Gulfport dataset: a) Ground truth map, the rest are classification maps obtained
by b) Raw-H, c) Raw, d) 3D-CNN, e) miniGCN, f) SAE-LR, g) NMFL, h) EPCA, i) GGF, j) EMAP,
k) OTVCA and l) ShearSAF when the number of training samples is five per class (the percentage
in the brackets is the corresponding accuracy).
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