Deep Metric Learning-Based Feature Embedding for Hyperspectral Image Classification
Learning from a limited number of labeled samples (pixels) remains a key challenge in the hyperspectral image (HSI) classification. To address this issue, we propose a deep metric learning-based feature embedding model, which can meet the tasks both for same-and cross-scene HSI classifications. In the first task, when only a few labeled samples are available, we employ ideas from metric learning based on deep embedding features and make a similarity learning between pairs of samples. In this case, the proposed model can.